Objective research to aid investing decisions
Menu
Value Allocations for September 2019 (Final)
Cash TLT LQD SPY
Momentum Allocations for September 2019 (Final)
1st ETF 2nd ETF 3rd ETF

Investing Research Articles

More International Equity Market Granularity for SACEMS?

A subscriber asked whether more granularity in international equity choices for the “Simple Asset Class ETF Momentum Strategy” (SACEMS), as considered by Decision Moose, would improve performance. To investigate, we replace the iShares MSCI Emerging Markets Index (EEM) and the iShares MSCI EAFE Index (EFA) with four regional international equity exchange-traded funds (ETF). The universe of assets becomes:

PowerShares DB Commodity Index Tracking (DBC)
iShares MSCI Pacific ex Japan (EPP)
iShares MSCI Japan (EWJ)
SPDR Gold Shares (GLD)
iShares Europe (IEV)
iShares Latin America 40 (ILF)
iShares Russell 1000 Index (IWB)
iShares Russell 2000 Index (IWM)
iShares Barclays 20+ Year Treasury Bond (TLT)
Vanguard REIT ETF (VNQ)
3-month Treasury bills (Cash)

We compare original (SACEMS Base) and modified (SACEMS Granular), each month picking winners from their respective sets of ETFs based on total returns over a fixed lookback interval. We focus on gross compound annual growth rate (CAGR), gross maximum drawdown (MaxDD) and rough gross annual Sharpe ratio (average annual return divided by standard deviation of annual returns) as key performance statistics for the Top 1, equally weighted (EW) Top 2 and EW Top 3 portfolios of monthly winners. Using daily and monthly total (dividend-adjusted) returns for the specified assets during February 2006 (limited by DBC) through April 2019, we find that: Keep Reading

Stock Returns Around Memorial Day

Does the Memorial Day holiday signal any unusual U.S. stock market return effects? By its definition, this holiday brings with it any effects from three-day weekends and sometimes the turn of the month. Prior to 1971, the U.S. celebrated Memorial Day on May 30. Effective in 1971, Memorial Day became the last Monday in May. To investigate the possibility of short-term effects on stock market returns around Memorial Day, we analyze the historical behavior of the stock market during the three trading days before and the three trading days after the holiday. Using daily closing levels of the S&P 500 Index for 1950 through 2018 (69 observations), we find that: Keep Reading

Weekly Summary of Research Findings: 5/13/19 – 5/17/19

Below is a weekly summary of our research findings for 5/13/19 through 5/17/19. These summaries give you a quick snapshot of our content the past week so that you can quickly decide what’s relevant to your investing needs.

Subscribers: To receive these weekly digests via email, click here to sign up for our mailing list. Keep Reading

Financial Experts Ignoring Better Statistical Methods?

Why are expert economic and financial (econometric) forecasters so inaccurate? In his April 2019 presentation package for a graduate course at Cornell entitled “The 7 Reasons Most Econometric Investments Fail”, Marcos Lopez de Prado enumerates shortcomings of standard econometric statistical methods, which concentrate on multivariate linear regressions. In contrast, advanced computational methods that exploit machine learning are ascendant in many other scientific fields, because they avoid (likely unrealistic) assumptions regarding actual data generation (such as linearity). Based on reviews of econometric texts and the body of econometric research, he concludes that: Keep Reading

The Bond King’s Alpha

Did Bill Gross, the Bond King, generate significantly positive alpha during his May 1987 through September 2014 tenure as manager of PIMCO Total Return Fund (Fund)? In their March 2019 paper entitled “Bill Gross’ Alpha: The King Versus the Oracle”, Richard Dewey and Aaron Brown investigate whether Bill Gross generates excess average return after adjusting for market exposures over this tenure. They further compare evaluation of bond market alpha for Bill Gross to evaluation of equity market alpha for Warren Buffett. Following the explanation given by Bill Gross for his outperformance, their factor model of Fund returns includes three long-only market factors: interest rate (Merrill Lynch 10-year Treasury Index), credit (Barclays U.S. Credit Index) and mortgage (Barclays U.S. MBS Index). It also includes a fourth factor that is long U.S. Treasury 5-year notes and short U.S. Treasury 30-year bonds, with weights set to eliminate coupon and roll-down effects of their different durations. Using monthly returns for the Fund and the four model factors, and monthly 1-month U.S. Treasury bill yield as the risk-free rate during June 1987 (first full month of the Fund) through September 2014 (when Gross left the Fund), they find that: Keep Reading

Stock Return Autocorrelations and Option Returns

Does return persistence of individual stocks predict associated option returns? In their March 2019 paper entitled “Stock Return Autocorrelations and the Cross Section of Option Returns”, Yoontae Jeon, Raymond Kan and Gang Li investigate relationships between equity option returns and return autocorrelations of underlying stocks. They consider call options, put options and straddles (long both a call and a put with the same strike price). Each month on standard option expiration date, they:

  • Measure one-step monthly stock return autocorrelations using a 36-month rolling window of monthly returns for U.S. stocks with over 20 monthly observations.
  • Rank stocks (and respective options) by autocorrelation into fifths (quintiles).
  • Construct a hedge portfolio that is long (short) the equal-weighted or market capitalization-weighted stocks in the top (bottom) quintile of autocorrelations, to calculate stock portfolio return as a control variable.
  • Construct corresponding hedge portfolios of call options, put options or straddles, limiting choices to reasonably liquid options with moneyness closest to 1.0 and time to expiration closest to 30 days. 
  • Hold these portfolios until the next standard option expiration date.

They further explore out-of-sample use of results via modified mean-variance optimization of a portfolio consisting of the S&P 500 Index, the risk-free asset and equity options with bid-ask spreads no greater than 10% of price. They size individual option positions as a function of underlying stock volatility, variance risk premium and stock return autocorrelation. They assume investor utility derives from constant relative risk aversion level 3. For the frictionless case, they base option returns on the bid-ask midpoint. For the case with frictions, they assume buys (sells) occur at the ask (bid). Using specified stock and options data during January 1996 through December 2017, they find that: Keep Reading

Does Volatility Management Work for Equity Factor Portfolios?

Do equity strategy portfolios characterized by aggressive (conservative) scaling when portfolio volatility is recently low (high) reliably beat unmanaged performance? In their March 2019 paper entitled “On the Performance of Volatility-Managed Portfolios”, Scott Cederburg, Michael O’Doherty, Feifei Wang and Xuemin Yan assess whether practical volatility management is systematically attractive. For each of 103 anomalies (nine widely used factors and 94 other published anomalies), they construct a hedge portfolio that is each month long (short) the value-weighted tenth of stocks with the highest (lowest) expected returns. They then construct volatility-managed versions of these portfolios based on inverse variance of daily portfolio returns the prior month. Focusing on gross Sharpe ratio, they compare head-to-head performances of volatility-managed portfolios and unmanaged counterparts. Focusing on gross Sharpe ratio and certainty equivalent return (CER), they also employ an historical training subsample to estimate mean-variance optimal allocations for: (1) a strategy that chooses among a given volatility-managed portfolio, its unmanaged counterpart and a risk-free asset; and, (2) a strategy chooses between only the unmanaged counterpart and the risk-free asset. Using daily returns for the 103 equity hedge portfolios, they find that:

Keep Reading

Effects of Factor Crowding

Does crowding of factor investing strategies reliably predict returns for those strategies? In his March 2019 paper entitled “The Impact of Crowding in Alternative Risk Premia Investing”, Nick Baltas explores mechanics of alternative risk (factor) premium crowding and implications of crowding for future performance. He classifies factor premiums as: divergent (such as momentum), inherently destabilizing due to positive feedback loops and lack of fundamental anchors; or, convergent (such as value), having self-correcting negative feedback loops and fundamental anchors. To test crowding effects, he considers the following premiums: equity value (book-to-market), size (market capitalization), momentum (from regression of return from 12 months ago to one month ago versus volatility), quality (return on assets) and low beta (versus the MSCI World Index); commodities momentum (12-month return); and, currencies value (purchasing power parity) and momentum (12-month return). Each premium consists of returns from a hedge portfolio that is each week long (short) the equal-weighted assets with the highest (lowest) expected returns. For equities, he uses top and bottom tenths. For commodities and currencies, he uses top and bottom thirds. His crowding metric (CoMetric) is average pairwise correlation of factor-adjusted returns of assets within the long or short sides of premium portfolios over the last 52 weeks (except 260 weeks for value). He defines the 20% of weeks with the highest (lowest) CoMetrics as most (least) crowded. Using the specified factor and return data for liquid developed market stocks since September 2004, 24 constituents of the S&P GSCI Commodity Index since January 1999, and 26 developed and emerging markets currency pairs versus the U.S. dollar since January 2000, all through May 2018, he finds that:

Keep Reading

Weekly Summary of Research Findings: 5/6/19 – 5/10/19

Below is a weekly summary of our research findings for 5/6/19 through 5/10/19. These summaries give you a quick snapshot of our content the past week so that you can quickly decide what’s relevant to your investing needs.

Subscribers: To receive these weekly digests via email, click here to sign up for our mailing list. Keep Reading

Automation Bias Among Individual Investors

Who do investors trust more, expert advisors or algorithms? In her March 2019 paper entitled “Algorithmic Decision-Making: The Death of Second Opinions?”, Nizan Packin employs a survey conducted on Amazon Mechanical Turk to assess automation bias when making significant investment decisions. Each of four groups of respondents received one of the following four questions (response scale 1 to 5):

  1. “You decide to invest 15% of your savings in the stock market. You find a reputable stockbroker, who makes investment recommendations. How confident are you that you got the best recommendation possible for your investment?”
  2. “You decide to invest 60% of your savings in the stock market. You find a reputable stockbroker, who makes investment recommendations. How confident are you that you got the best recommendation possible for your investment?”
  3. “You decide to invest 15% of your savings in the stock market. You find a reputable online automated investment advisor, who makes investment recommendations. How confident are you that you got the best recommendation possible for your investment?”
  4. “You decide to invest 60% of your savings in the stock market. You find a reputable online automated investment advisor, who makes investment recommendations. How confident are you that you got the best recommendation possible for your investment?”

A followup question asked about level of comfort trusting again the same expert (human or algorithmic) after learning that the initial recommendation resulted in a significant loss. Analyses included controls for respondent age, gender, socioeconomic status, having some college education, race and political ideology (liberal/conservative). Based on 800 total responses to specified survey questions, she finds that: Keep Reading

Daily Email Updates
Login
Research Categories
Recent Research
Popular Posts