Objective research to aid investing decisions
Menu
Value Allocations for November 2019 (Final)
Cash TLT LQD SPY
Momentum Allocations for November 2019 (Final)
1st ETF 2nd ETF 3rd ETF

Sophisticated Simulation of Intrinsic (Time Series) Momentum

Posted in Momentum Investing

How can investors confidently assess risk of strategy crashes (tail events) when there are so few crashes even in long samples? In their March 2019 paper entitled "Time-Series Momentum: A Monte-Carlo Approach", Clemens Struck and Enoch Cheng present a Monte-Carlo simulation procedure for strategy backtesting that both preserves time series and cross-sectional return characteristics while diversifying time series simulation inputs. They use this procedure to test intrinsic (absolute or time series) momentum on S&P 500 Index futures and on an equal-weighted multi-class portfolio of 27 futures series. They consider long-short and long-only (long-cash) versions of time series momentum (TSM), with or without volatility adjustment. For testing actual histories, they consider lookback intervals of 1, 3, 6, 9 and 12 months to measure momentum. For simulations, they focus on optimal lookbacks from actual histories and consider multiple time series models. Their in-sample subperiods are 1985-2009 for the S&P 500 Index and February 1989-2009 for the multi-class portfolio. Their out-of-sample subperiod is 2010-2018. They roll each futures series at the end of each month into the next front contract, using spot indexes prior to the availability of some futures. They use buy-and-hold portfolios (with rolling) as benchmarks. Using monthly prices for nine equity indexes, four government bonds, eight commodities and six currencies futures/spot series in U.S. dollars over the specified sample period, they find that:

Please or subscribe to continue reading...
Gain access to hundreds of premium articles, our momentum strategy, full RSS feeds, and more!  Learn more

Daily Email Updates
Login
Research Categories
Recent Research
Popular Posts