Objective research to aid investing decisions
Value Allocations for October 2019 (Final)
Momentum Allocations for October 2019 (Final)
1st ETF 2nd ETF 3rd ETF

Investing Research Articles

Investment Strategy Development Tournaments?

Is there a way that asset managers can share knowledge/data across proprietary boundaries with many researchers to advance development of investment strategies? In their September 2019 paper entitled “Crowdsourced Investment Research through Tournaments”, Marcos Lopez de Prado and Frank Fabozzi describe highly structured tournaments as a crowdsourcing paradigm for investment research. In each such tournament, the organizer poses one investment challenge as a forecasting problem and provides abstracted and obfuscated data. Contestants pay an entry fee, develop models and provide forecasts, retaining model ownership by running calculations on their own hardware/software. Based on this hypothetical tournament setup and their experience, they conclude that:

Keep Reading

Sector Breadth as Market Return Indicator

Does breadth of equity sector performance predict overall stock market return? To investigate, we relate next-month stock market return to sector breadth (number of sectors with positive past returns) over lookback intervals ranging from 1 to 12 months. We consider the following nine sector exchange-traded funds (ETF) offered as Standard & Poor’s Depository Receipts (SPDR):

Materials Select Sector SPDR (XLB)
Energy Select Sector SPDR (XLE)
Financial Select Sector SPDR (XLF)
Industrial Select Sector SPDR (XLI)
Technology Select Sector SPDR (XLK)
Consumer Staples Select Sector SPDR (XLP)
Utilities Select Sector SPDR (XLU)
Health Care Select Sector SPDR (XLV)
Consumer Discretionary Select SPDR (XLY)

We use SPDR S&P 500 (SPY) to represent the overall stock market. Using monthly dividend-adjusted returns for SPY and the sector ETFs during December 1998 through August 2019, we find that: Keep Reading

Compendium of Recent “Long Run” Research

The following list links to summaries of recent (since 2010) investment research using long data samples. These summaries may be helpful in developing strategic allocations and tactical wariness for long-horizon investments.

Another long run source is the annual update of the work summarized in Triumph of the Optimists (Chapter-by-Chapter Review).

Some general cautions regarding such studies are:

  • Reconstruction of price series from, for example, old newspapers involves missing data and potentially inconsistent reporting approaches. In other words, quality of old data is suspect.
  • The number of asset class price series available may be small in early parts of sample periods.
  • Some studies may impound survivorship bias via omission of assets that were important in the past but are no longer tracked in source databases.
  • For studies using Shiller data, monthly levels are averages of monthly values, blurring monthly statistics and modestly blurring annual statistics. Results based on end-of-month values may differ.
  • Reported returns are gross, not net. Accounting for costs of maintaining a tracking fund for a portfolio/index of commodities would reduce returns. Also:
    • Studies involving shorting (such as factor premium analyses) typically do not address the cost/feasibility of shorting.
    • Costs of maintaining tracking funds may vary by asset class, by country and over time, confounding comparisons. For example, commodity futures indexes generally assume monthly rolling of many contract series.
    • Investment capacities of some assets may be especially limited early in sample periods.
    • Tax consequences of trading vary considerably across countries and over time.
  • Historical timeliness of data collection/processing for periodic trading (for example, for portfolio rebalancing) may be especially problematic in early parts of sample periods.
  • Economies and markets change over time, making it difficult to assess the relative importance of older versus newer data.
  • Distant past availability of retrospectively constructed indexes may have altered contemporaneous market behaviors (induced market adaptations).

Weekly Summary of Research Findings: 10/7/19 – 10/11/19

Below is a weekly summary of our research findings for 10/7/19 through 10/11/19. These summaries give you a quick snapshot of our content the past week so that you can quickly decide what’s relevant to your investing needs.

Subscribers: To receive these weekly digests via email, click here to sign up for our mailing list. Keep Reading

Commodity Futures Risk Premium Over the Long Run

What are long run returns for commodity futures? In their September 2019 paper entitled “The Commodity Futures Risk Premium: 1871-2018”, Geetesh Bhardwaj, Rajkumar Janardanan and Geert Rouwenhorst estimate the historical risk premium of commodity futures from a long and broad sample free of survivorship bias covering 230 contract series traded since 1871 mostly in the U.S. and the UK. They calculate the premium as average excess return for rolling front-month contracts in three ways: (1) simple equal weighting of all monthly observations; (2) equal-weighted separately calculated premiums for each contract series; and, (3) average excess return for an equal‐weighted index series. They explore the link between survival of a contract series and its risk premium. They also estimate returns to basis or momentum factor strategies that are each month long (short) the equal-weighted half of available commodities with the higher (lower) futures basis or prior-year spot return. Using monthly prices for 230 commodity futures traded on 28 exchanges during 1871 through 2018, they find that: Keep Reading

Inflation Forecast Update

The Inflation Forecast now incorporates actual total and core Consumer Price Index (CPI) data for September 2019. The actual total (core) inflation rate for September is lower (a little lower than) forecasted.

Bond Returns Over the Very Long Run

Do bonds have a bad rap based on an unfavorable subsample? In the September 2019 revisions of his papers entitled “The US Bond Market Before 1926: Investor Total Return from 1793, Comparing Federal, Municipal, and Corporate Bonds Part I: 1793 to 1857” and “Part II: 1857 to 1926”, Edward McQuarrie revisits analysis of returns to bonds in the U.S. prior to 1926. He focuses on investor holding period returns rather than yields, considering U.S. Treasury, state, city and corporate debt. Specifically, he estimates returns to a 19th century diversified bond portfolio comprised of all long-term investment grade bonds trading in any year (free of contaminating factors such as circulation privileges and tax exemptions). Returns assume:

  1. Weights are proportional to amounts outstanding.
  2. Bonds are far from before maturity.
  3. Calculations use actual bond prices.

In other words, he calculates performance of a diversified index fund tracking actual long-term, investment-grade 19th century U.S. bonds. He also calculates returns to sub-indexes as feasible. He further constructs a new stock index for the period January 1793 to January 1871 and revisits conclusions in Stocks for the Long Run about relative performances of stocks and bonds. Using newly and previously compiled U.S. bond and stock prices extending back to January 1793, he finds that:

Keep Reading

Systemic Risk Impacts of Growth in Passive Investing

How does a shift in emphasis from active to passive investing affect the financial market risk landscape? In their September 2019 paper entitled “The Shift From Active to Passive Investing: Potential Risks to Financial Stability?”, Kenechukwu Anadu, Mathias Kruttli, Patrick McCabe, Emilio Osambela and Chaehee Shin analyze how a shift from active to passive investing affects:

  1. Investment fund redemption liquidity risks.
  2. Market volatility.
  3. Asset management industry concentration.
  4. Co-movement of asset returns and liquidity.

They also assess how effects are likely to evolve if the active-to-passive shift continues. Based on their framework/analysis, they conclude that: Keep Reading

FactSet S&P 500 Earnings Growth Estimate Evolutions

A subscriber, citing the weekly record of S&P 500 earnings growth estimates in the “FactSet Earnings Insight” historical series, wondered whether estimate trends/revisions are exploitable. To investigate, we collect S&P 500 quarterly year-over-year earnings growth estimates as recorded in this series. These data are bottom-up (firm by firm) aggregates, whether purely from analyst estimates (before any actual earnings releases), or a blend of actual earnings and estimates (during the relevant earnings season). Using these data and contemporaneous weekly levels of the S&P 500 Index during April 2011 through mid-September 2019, we find that: Keep Reading

Trading Strategy Catalog

Where can investors find a large catalog of trading strategies spanning asset classes? In the September 2019 update of their paper entitled “151 Trading Strategies”, Zura Kakushadze and Juan Andres Serur make freely available their book describing over 150 trading strategies, including over 550 formulas. These strategies encompass many asset classes and trading styles, including: stocks, options, fixed income, futures, exchange-traded funds, commodities, foreign exchange, convertibles, structured assets (collateralized debt and mortgage-backed), volatility, real estate, distressed, crypto, weather, energy, inflation, global macro, infrastructure and tax arbitrage. Some strategies incorporate machine learning. The paper does not include empirical studies, numerical simulations or backtests, but does contain annotated source code for out-of-sample testing, references and a glossary of acronyms and mathematical terms. Based on experience, they observe that: Keep Reading

Daily Email Updates
Research Categories
Recent Research
Popular Posts