Objective research to aid investing decisions
Menu
Value Allocations for November 2019 (Final)
Cash TLT LQD SPY
Momentum Allocations for November 2019 (Final)
1st ETF 2nd ETF 3rd ETF

Investing Research Articles

Trading U.S. Stocks on Core Earnings

Does careful accounting for transitory expenses in SEC Form 10-Ks provide a better view of future firm/stock performance than that provided by Generally Accepted Accounting Practices (GAAP) earnings per share (EPS)? In their October 2019 paper entitled “Core Earnings: New Data and Evidence”, Ethan Rouen, Eric So and Charles Wang define Core Earnings, which adds to GAAP 10-K net non-operating expenses related to: (1) acquisitions, (2) currency exchange adjustments, discontinued operations, (4) legal or regulatory events, (5) pension adjustments, (6) restructuring, (7) gains and losses designated “other” by firms and (8) other unclassified gains and losses deemed non-operating. Using a dataset compiled by a combination of human analysts and machine learning that identifies and classifies quantitative disclosures in 10-Ks of Russell 3000 firms, and associated stock prices, during 1998 through 2017, they find that:

Keep Reading

Combine Market Trend and Economic Trend Signals?

A subscriber requested review of an analysis concluding that combining economic trend and market trend signals enhances market timing performance. Specifically, per the example in the referenced analysis, we look at combining:

  • The 10-month simple moving average (SMA10) for the broad U.S. stock market. The trend is positive (negative) when the market is above (below) its SMA10.
  • The 12-month simple moving average (SMA12) for the U.S. unemployment rate (UR). The trend is positive (negative) when UR is below (above) its SMA12.

We consider scenarios when the stock market trend is positive, the UR trend is positive, either trend is positive or both trends are positive. We consider two samples: (1) dividend-adjusted SPDR S&P 500 (SPY) since inception at the end of January 1993 (nearly 26 years); and, (2) the S&P 500 Index (SP500) since January 1948 (limited by UR availability), adjusted monthly by estimated dividends from the Shiller dataset, for longer-term robustness tests (nearly 71 years). Per the referenced analysis, we use the seasonally adjusted civilian UR, which comes ultimately from the Bureau of Labor Statistics (BLS). BLS generally releases UR monthly within a few days after the end of the measured month. We make the simplifying assumptions that UR for a given month is available for SMA12 calculation and signal execution at the market close for that same month. When not in the stock market, we assume return on cash from the broker is the yield on 3-month U.S. Treasury bills (T-bill). We focus on gross compound annual growth rate (CAGR), maximum drawdown (MaxDD) and annual Sharpe ratio as key performance metrics. We use the average monthly T-bill yield during a year as the risk-free rate for that year in Sharpe ratio calculations. While we do not apply any stocks-cash switching frictions or tax considerations, we do calculate the number of switches for each scenario. Using specified monthly data through September 2019, we find that: Keep Reading

Weekly Summary of Research Findings: 11/4/19 – 11/8/19

Below is a weekly summary of our research findings for 11/4/19 through 11/8/19. These summaries give you a quick snapshot of our content the past week so that you can quickly decide what’s relevant to your investing needs.

Subscribers: To receive these weekly digests via email, click here to sign up for our mailing list. Keep Reading

Add REITs to SACEVS?

What happens if we extend the “Simple Asset Class ETF Value Strategy” (SACEVS) with a real estate risk premium, derived from the yield on equity Real Estate Investment Trusts (REIT), represented by the FTSE NAREIT Equity REITs Index? To investigate, we apply the SACEVS methodology to the following asset class exchange-traded funds (ETF), plus cash:

3-month Treasury bills (Cash)
iShares 20+ Year Treasury Bond (TLT)
iShares iBoxx $ Investment Grade Corporate Bond (LQD)
SPDR Dow Jones REIT (RWR) through September 2004 dovetailed with Vanguard REIT ETF (VNQ) thereafter
SPDR S&P 500 (SPY)

This set of ETFs relates to four risk premiums, as specified below: (1) term; (2) credit (default); (3) real estate; and, (4) equity. We focus on the effects of adding the real estate risk premium on Compound annual growth rates (CAGR) and Maximum drawdowns (MaxDD) of the Best Value (picking the most undervalued premium) and Weighted (weighting all undervalued premiums according to degree of undervaluation) versions of SACEVS. Using lagged quarterly S&P 500 earnings, monthly S&P 500 Index levels and monthly yields for 3-month U.S. Treasury bill (T-bill), the 10-year Constant Maturity U.S. Treasury note (T-note), Moody’s Seasoned Baa Corporate Bonds and FTSE NAREIT Equity REITs Index during March 1989 through August 2018 (limited by availability of earnings data), and monthly dividend-adjusted closing prices for the above asset class ETFs during July 2002 through September 2019, we find that: Keep Reading

“Best” Indicator Consistency Across Samples

A subscriber inquired whether “The Only Indicator You Will Ever Need” really works. This technical indicator, a form of the Coppock Guide (or curve or indicator), applied to the Dow Jones Industrial Average by Jay Kaeppel, is a multi-parameter composite based on monthly closes as follows:

  1. Calculate the asset’s return over the past 11 months.
  2. Calculate the asset’s return over the past 14 months.
  3. Average these two past returns.
  4. Each month, calculate the 10-month front-weighted moving average (WMA) of this average (multiply the most recent value by 10, the next most recent by 9, the value for the month before that by 8, etc). Then sum the products and divide by 55.
  5. Hold the asset (cash) if this WMA is above (below) its value three months ago.

We designate this indicator 11-14WMA3. To test 11-14WMA3 in realistic scenarios, we apply it to the entire available histories for three exchange-traded funds (ETF): SPDR S&P 500 (SPY), SPDR Dow Jones Industrial Average (DIA) and iShares Russell 2000 (IWM). We consider buy-and-hold and a conventional 10-month simple moving average timing strategy (SMA10) as benchmarks. SMA10 holds the ETF (cash) when the ETF’s most recent monthly close is above (below) its 10-month SMA. Using monthly dividend-adjusted and unadjusted closes for the ETFs from their respective inceptions through September 2019 and contemporaneous 3-month U.S. Treasury bill (T-bill) yield, we find that: Keep Reading

Are Currency Carry Trade ETFs Working?

Is the currency carry trade, as implemented by exchange-traded funds/notes (ETF/ETN), attractive? To investigate, we consider two currency carry trade ETF/ETNs, one live (with low trading volume) and one essentially dead:

  • PowerShares DB G10 Currency Harvest Fund (DBV) – tracks changes in the Deutsche Bank G10 Currency Future Harvest Index. This index consists of futures contracts on certain G10 currencies with up to 2:1 leverage to exploit the tendency that currencies with relatively high interest rates tend to appreciate relative to currencies with relatively low interest rates, reconstituted annually in November.
  • iPath Optimized Currency Carry (ICITF) – provides exposure to the Barclays Optimized Currency Carry Index, which reflects the total return of a strategy that holds high-yielding G10 currencies financed by borrowing low-yielding G10 currencies. This fund stopped trading about July 2018, but an indicative value is still available.

We focus on monthly return statistics, plus compound annual growth rates (CAGR) and maximum drawdowns (MaxDD). For reference (not benchmarking), we compare results to those for SPDR S&P 500 (SPY) and iShares Barclays 20+ Year Treasury Bond (TLT). Using monthly total returns for the two currency carry trade products, SPY and TLT as available through September 2019, we find that: Keep Reading

SACEMS Optimization in Depth

The Simple Asset Class ETF Momentum Strategy (SACEMS) each month picks the one, two or three of nine asset class proxies with the highest cumulative total returns over a specified lookback interval. A subscriber proposed instead using the optimal intrinsic (time series or absolute) momentum lookback interval for each asset rather than a common lookback interval for all assets. SACEMS and the proposed approach represent different beliefs (which could both be somewhat true), as follows:

  • Many investors adjust asset class allocations with some regularity, such that behaviors of classes are important and coordinated.
  • Many investors switch between specific asset classes and cash with some regularity, such that each class may exhibit distinct times series behavior. 

To investigate, we consider two ways to measure intrinsic momentum for each asset class proxy:

  1. Correlation between next-month return and average monthly return over the past one to 12 months. The lookback interval with the highest correlation has the strongest (linear) relationship between past and future returns and is optimal.
  2. Intrinsic momentum, measured as  compound annual growth rate (CAGR) for a strategy that is in the asset (cash) when its total return over the past one to 12 months is positive (zero or negative). The lookback interval with the highest CAGR is optimal.

We use the two sets of optimal lookback intervals (optimization-in-depth) to calculate momentum for each asset class proxy as its average monthly return over its optimal lookback interval. We then compare performance statistics for these two alternatives to those for base SACEMS, focusing on: gross CAGR for several intervals; average gross annual return; standard deviation of annual returns; gross annual Sharpe ratio; and, gross maximum drawdown (MaxDD). Using monthly dividend-adjusted prices for SACEMS asset class proxies during February 2006 through September 2019, we find that:

Keep Reading

Combine Market Trend and Economic Trend Signals?

A subscriber requested review of an analysis concluding that combining economic trend and market trend signals enhances market timing performance. Specifically, per the example in the referenced analysis, we look at combining:

  • The 10-month simple moving average (SMA10) for the broad U.S. stock market. The trend is positive (negative) when the market is above (below) its SMA10.
  • The 12-month simple moving average (SMA12) for the U.S. unemployment rate (UR). The trend is positive (negative) when UR is below (above) its SMA12.

We consider scenarios when the stock market trend is positive, the UR trend is positive, either trend is positive or both trends are positive. We consider two samples: (1) dividend-adjusted SPDR S&P 500 (SPY) since inception at the end of January 1993 (nearly 26 years); and, (2) the S&P 500 Index (SP500) since January 1948 (limited by UR availability), adjusted monthly by estimated dividends from the Shiller dataset, for longer-term robustness tests (nearly 71 years). Per the referenced analysis, we use the seasonally adjusted civilian UR, which comes ultimately from the Bureau of Labor Statistics (BLS). BLS generally releases UR monthly within a few days after the end of the measured month. We make the simplifying assumptions that UR for a given month is available for SMA12 calculation and signal execution at the market close for that same month. When not in the stock market, we assume return on cash from the broker is the yield on 3-month U.S. Treasury bills (T-bill). We focus on gross compound annual growth rate (CAGR), maximum drawdown (MaxDD) and annual Sharpe ratio as key performance metrics. We use the average monthly T-bill yield during a year as the risk-free rate for that year in Sharpe ratio calculations. While we do not apply any stocks-cash switching frictions or tax considerations, we do calculate the number of switches for each scenario. Using specified monthly data through September 2019, we find that: Keep Reading

Weekly Summary of Research Findings: 10/28/19 – 11/1/19

Below is a weekly summary of our research findings for 10/28/19 through 11/1/19. These summaries give you a quick snapshot of our content the past week so that you can quickly decide what’s relevant to your investing needs.

Subscribers: To receive these weekly digests via email, click here to sign up for our mailing list. Keep Reading

Jim Cramer Using the S&P Oscillator

A reader asked about the usefulness of the S&P Short-range Oscillator as sometimes used by Jim Cramer to forecast U.S. stock market returns. The self-reported “Performance” of the oscillator, relying on in-sample visual inspection with snooped thresholds, is of small use. Since continuous historical values of the indicator are not publicly available, we conduct an out-of-sample test by:

  1. Searching CNBC.com for “Oscillator” “Mad Money” and just “Oscillator” on October 3, 2019 and identifying articles with U.S. stock market forecasts from Jim Cramer based on the S&P Short-range Oscillator.
  2. Extracting the date for each forecast and determining whether it is call to be “In” or “Out” of the market.
  3. Calculating for each call a cumulative S&P 500 Index return starting at the next open after the article date (generally timestamped after the market close) for 21 trading days.
  4. Computing average cumulative performances of “In” and “Out” calls.
  5. Comparing these averages to that for all days spanning the search results.

Using the 15 qualifying articles and daily opening levels of the S&P 500 Index during June 16, 2008 through October 31, 2019, we find that: Keep Reading

Daily Email Updates
Login
Research Categories
Recent Research
Popular Posts