Objective research to aid investing decisions

Value Investing Strategy (Strategy Overview)

Allocations for November 2021 (Final)
Cash TLT LQD SPY

Momentum Investing Strategy (Strategy Overview)

Allocations for November 2021 (Final)
1st ETF 2nd ETF 3rd ETF

Fundamental Valuation

What fundamental measures of business success best indicate the value of individual stocks and the aggregate stock market? How can investors apply these measures to estimate valuations and identify misvaluations? These blog entries address valuation based on accounting fundamentals, including the conventional value premium.

Stock Market Valuation Ratio Trends

To determine whether the stock market is expensive or cheap, some experts use aggregate valuation ratios, either trailing or forward-looking, such as earnings-price ratio (E/P) and dividend yield. Under belief that such ratios are mean-reverting, most imminently due to movement of stock prices, these experts expect high (low) future stock market returns when these ratios are high (low). Where are the ratios now and how are they changing during recent months? Using recent actual and forecasted earnings and dividend data from Standard & Poor’s and associated S&P 500 Index levels as available through November 19, 2021, we find that: Keep Reading

Online, Real-time Test of AI Stock Picking

Will equity funds “managed” by artificial intelligence (AI) outperform human investors? To investigate, we consider the performance of AI Powered Equity ETF (AIEQ). Per the offeror, the EquBot model supporting AIEQ: “…leverages IBM’s Watson AI to conduct an objective, fundamental analysis of U.S. domiciled common stocks, including Special Purpose Acquisitions Corporations (“SPAC”), and real estate investment trusts (“REITs”) based on up to ten years of historical data and apply that analysis to recent economic and news data… Each day, the EquBot Model…identifies approximately 30 to 200 companies with the greatest potential over the next twelve months for appreciation and their corresponding weights, targeting a maximum risk adjusted return versus the broader U.S. equity market. …The EquBot model limits the weight of any individual company to 10%. At times, a significant portion of the Fund’s assets may consist of cash and cash equivalents.” We use SPDR S&P 500 (SPY) as a simple benchmark for AIEQ performance. Using daily and monthly dividend-adjusted closes of AIEQ and SPY from AIEQ inception (October 18, 2017) through October 2021, we find that: Keep Reading

Accounting for Past Return to ESG Stocks

Does past performance of Environmental, Social, and Corporate Governance (ESG) stocks derive mostly from shift in demand from other stocks to ESG stocks? In his September 2021 paper entitled “Flow-Driven ESG Returns”, Philippe van der Beck examines whether flow of investor dollars toward ESG mutual funds explains aggregate performance of ESG stocks, as follows:

  • Construct an ESG portfolio that aggregates quarterly holdings of U.S. equity mutual funds that assert sustainability mandates.
  • Measure perceived sustainability of each stock by calculating the deviation of its ESG portfolio weight from its market portfolio weight.
  • Estimate the price pressure due to a flow of dollars into ESG mutual funds.
  • Combine perceived stock sustainability and price pressure to explore sensitivity of past ESG portfolio returns to level of dollar flow into ESG mutual funds.

Using mutual fund descriptions (with respect to importance of sustainability in investment decisions) and quarterly Form 13F mutual fund holdings data during 2000 through 2020, and underlying stock prices through the first quarter of 2021, he finds that:

Keep Reading

Stock Index Earnings-Returns Lead-lag

A subscriber asked about the lead-lag relationship between S&P 500 earnings and S&P 500 Index returns. To investigate, we relate actual aggregate S&P 500 operating and as-reported earnings to S&P 500 Index returns at both quarterly and annual frequencies. Earnings forecasts are available well in advance of returns. Actual earnings releases for a quarter occur throughout the next quarter. Using quarterly S&P 500 earnings and index levels during March 1988 through June 2021 and September 2021, respectively, we find that: Keep Reading

Do High-dividend Stock ETFs Beat the Market?

A subscriber asked about current evidence that high-dividend stocks outperform the market. To investigate, from a practical perspective, we compare performances of five high-dividend stock exchange-traded funds (ETFs) with relatively long histories to that of SPDR S&P 500 (SPY) as a proxy for the U.S. stock market. The five high-dividend stock ETFs are:

  • iShares Select Dividend (DVY), with inception November 2003.
  • PowerShares Dividend Achievers ETF (PFM), with inception September 2005.
  • SPDR S&P Dividend ETF (SDY), with inception November 2005.
  • WisdomTree Dividend ex-Financials ETF (DTN), with inception June 2006.
  • Vanguard High Dividend Yield ETF (VYM), with inception November 2006.

For each of these ETFs, we compare average monthly total (dividend-reinvested) return, standard deviation of total monthly returns, monthly return-risk ratio (average monthly return divided by standard deviation), compound annual growth rate (CAGR) and maximum drawdown (MaxDD) to those for SPY over matched sample periods. We also look at alphas and betas for the five ETFs based on simple regressions of monthly returns versus SPY returns. Using monthly total returns for the five high-dividend stock ETFs and SPY over available sample periods through September 2021, we find that:

Keep Reading

Examining Disruptive/Transformational Thematic Indexes

Leading index providers have introduced thematic stock indexes to address transformative macroeconomic, geopolitical or technological trends (for example, cybersecurity, robotics, autonomous vehicles and clean power). How do these indexes relate to standard asset pricing models? In his August 2021 paper entitled “Betting Against Quant: Examining the Factor Exposures of Thematic Indices”, David Blitz examines the performance characteristics of these indexes based on widely used factor models of stock returns and discusses why investors may follow these indexes via exchange-traded funds (ETF) despite unfavorable factor exposures. He considers 36 S&P indexes (narrower, equal-weighted) and 12 MSCI indexes (broader, capitalization-weighted) with at least three years of history. Using monthly returns for these 48 indexes and for components of the Fama-French 5-factor (market, size, book-to-market, profitability and investment) model and the momentum factor as available during June 2013 through April 2021, he finds that:

Keep Reading

Combining SMA10 and P/E10 Signals

In response to the U.S. stock market timing backtest in “Usefulness of P/E10 as Stock Market Return Predictor”, a subscriber suggested combining a 10-month simple moving average (SMA10) technical signal with a P/E10 (or Cyclically Adjusted Price-Earnings ratio, CAPE) fundamental signal. Specifically, we test:

  • SMA10 – bullish/in stocks (bearish/in government bonds) when prior-month stock index level is above (below) its SMA10.
  • SMA10 AND Binary 20-year Bond – in stocks only when both SMA10 and P/E10 Binary 20-year signals are bullish, and otherwise in bonds. The latter rule is bullish when last-month P/E10 is below its rolling 20-year monthly average.
  • SMA10 OR Binary 20-year Bond – in stocks when one or both of the two signals are bullish, and otherwise in bonds.
  • NEITHER SMA10 NOR Binary 20-year Bond – in stocks only when neither signal is bullish, and otherwise in bonds.

We use Robert Shiller’s S&P Composite Index to represent stocks. We estimate monthly levels of a simple 10-year government bond index and associated monthly returns using Shiller yield data as described in “Usefulness of P/E10 as Stock Market Return Predictor”. We consider buying and holding the S&P Composite Index and the P/E10 Binary 20-year Bond strategy as benchmarks. Using monthly data from Robert Shiller, including S&P Composite Index level, associated dividends, 10-year government bond yields and values of P/E10 as available during January 1871 through June 2021, we find that:

Keep Reading

Modified Test of P/E10 Usefulness

In response to the U.S. stock market timing backtest in “Usefulness of P/E10 as Stock Market Return Predictor”, a subscriber suggested a modification for exploiting P/E10 (or Cyclically Adjusted Price-Earnings ratio, CAPE). Instead of binary signals that buy (sell) stocks when P/E10 crosses below (above) its historical average, employ a scaled allocation to stocks that considers how far P/E10 is from average. Specifically:

  • If P/E10 is more than 2 standard deviations below its past average, allocate 100% to the S&P Composite Index.
  • If P/E10 is more than 2 standard deviations above its past average, allocate 0% to the S&P Composite Index.
  • If P/E10 is between these thresholds, allocate a percentage (ranging from 100% to 0%) to the S&P Composite Index, scaled linearly.

To investigate, we backtest this set of rules. Using monthly data from Robert Shiller, including S&P Composite Index level, associated dividends, 10-year government bond yields and values of P/E10 as available during January 1871 through December 2019, we find that:

Keep Reading

Usefulness of P/E10 as Stock Market Return Predictor

Does P/E10 (or Cyclically Adjusted Price-Earnings ratio, CAPE) usefully predict U.S. stock market returns? Per Robert Shiller’s data, P/E10 is inflation-adjusted S&P Composite Index level divided by average monthly inflation-adjusted 12-month trailing earnings of index companies over the last ten years. To investigate its usefulness, we consider in-sample regression/ranking tests and out-of-sample cumulative performance tests. Using monthly values of P/E10, S&P Composite Index levels (calculated as average of daily closes during the month), associated dividends (smoothed), 12-month trailing real earnings (smoothed) and interest rates as available during January 1871 through June 2021, we find that: Keep Reading

Are Stock Quality ETFs Working?

Are stock quality strategies, as implemented by exchange-traded funds (ETF), attractive? To investigate, we consider five ETFs, all currently available (from oldest to youngest):

We calculate monthly return statistics, along with compound annual growth rates (CAGR) and maximum drawdowns (MaxDD). Using monthly returns for the stock quality ETFs and benchmarks as available through June 2021, we find that:

Keep Reading

Login
Daily Email Updates
Filter Research
  • Research Categories (select one or more)