Objective research to aid investing decisions
Value Allocations for Jan 2019 (Final)
Cash TLT LQD SPY
Momentum Allocations for Jan 2019 (Final)
1st ETF 2nd ETF 3rd ETF

Should the “Anxious Index” Make Investors Anxious?

Since 1990, the Federal Reserve Bank of Philadelphia has conducted a quarterly Survey of Professional Forecasters. The American Statistical Association and the National Bureau of Economic Research conducted the survey from 1968-1989. Among other things, the survey solicits from economic experts probabilities of U.S. economic recession (negative GDP growth) during each of the next four quarters. The survey report release schedule is mid-quarter. For example, the release date of the fourth quarter 2018 report is November 13, 2018, with forecasts for the four quarters of 2019. The “Anxious Index” is the probability of recession during the next quarter. Are these forecasts meaningful for future U.S. stock market returns? Rather than relate the probability of recession to stock market returns, we instead relate one minus the probability of recession (the probability of good times). If forecasts are accurate, a relatively high (low) forecasted probability of good times should indicate a relatively strong (weak) stock market. Using survey results and quarterly S&P 500 Index levels (on survey release dates as available, and mid-quarter before availability of release dates) from the fourth quarter of 1968 through the fourth quarter of 2018 (201 surveys), we find that:

Keep Reading

Back Doors in Betting Against Beta?

Do unconventional portfolio construction techniques obscure how, and how well, betting against beta (BAB) works? In their November 2018 paper entitled “Betting Against Betting Against Beta”, Robert Novy-Marx and Mihail Velikov revisit the BAB factor, focusing on interpretation of three unconventional BAB construction techniques:

  1. Rank weighting of stocks – BAB employs rank weighting rather than equal or value weighting, with each stock in high and low estimated beta portfolios weighted proportionally to the difference between its estimated beta rank and the median rank.
  2. Hedging by leveraging – BAB seeks market neutrality by deleveraging (leveraging) the high (low) beta portfolio based on estimated betas rather than borrowing to buy the market portfolio to offset BAB’s short market tilt.
  3. Novel beta estimation – BAB measures stock betas by combining market correlations based on five years of overlapping 3-day returns with volatilities based on one year of daily returns, rather than using slope coefficients of daily stock returns versus daily market returns.

Based on mathematical analysis and empirical results using returns for a broad sample of U.S. stocks during January 1968 through December 2017, they find that: Keep Reading

Weekly Summary of Research Findings: 1/14/19 – 1/18/19

Below is a weekly summary of our research findings for 1/14/19 through 1/18/19. These summaries give you a quick snapshot of our content the past week so that you can quickly decide what’s relevant to your investing needs.

Subscribers: To receive these weekly digests via email, click here to sign up for our mailing list. Keep Reading

Adjust the SACEMS Lookback Interval?

The Simple Asset Class ETF Momentum Strategy (SACEMS) each month picks winners based on total return over a specified ranking (lookback) interval from the following eight asset class exchange-traded funds (ETF), plus cash:

PowerShares DB Commodity Index Tracking (DBC)
iShares MSCI Emerging Markets Index (EEM)
iShares MSCI EAFE Index (EFA)
SPDR Gold Shares (GLD)
iShares Russell 2000 Index (IWM)
SPDR S&P 500 (SPY)
iShares Barclays 20+ Year Treasury Bond (TLT)
Vanguard REIT ETF (VNQ)
3-month Treasury bills (Cash)

This set of ETFs offers: (1) opportunities to capture momentum across global developed and emerging equity markets, large and small U.S. equities, bonds and commodities; (2) gold and cash as safe havens; (3) histories long enough for backtesting across multiple market environments; and, (4) simplicity of computation and recognition of the trade-off between number of ETFs and trading frictions. As historical data accumulate, we can estimate an increasingly robust optimal lookback interval. Should we change the baseline lookback interval at this point? To investigate, we revisit relevant analyses and conduct further robustness tests, with focus on the equal-weighted (EW) Top 3 SACEMS portfolio. Using monthly dividend-adjusted closing prices for asset class proxies and the yield for Cash during February 2006 (when all ETFs are first available) through December 2018, we find that: Keep Reading

Online, Real-time Test of AI Stock Picking?

Will equity funds “managed” by artificial intelligence (AI) outperform human investors? To investigate, we consider the performance of AI Powered Equity ETF (AIEQ), which “seeks to provide investment results that exceed broad U.S. Equity benchmark indices at equivalent levels of volatility.” More specifically, offeror EquBot: “…leverages IBM’s Watson AI to conduct an objective, fundamental analysis of U.S.-listed common stocks and real estate investment trusts…based on up to ten years of historical data and apply that analysis to recent economic and news data. Each day, the EquBot Model ranks each company based on the probability of the company benefiting from current economic conditions, trends, and world events and identifies approximately 30 to 70 companies with the greatest potential over the next twelve months for appreciation and their corresponding weights, while maintaining volatility…comparable to the broader U.S. equity market. The Fund may invest in the securities of companies of any market capitalization. The EquBot model recommends a weight for each company based on its potential for appreciation and correlation to the other companies in the Fund’s portfolio. The EquBot model limits the weight of any individual company to 10%.” We use SPDR S&P 500 (SPY) as a simple benchmark for AIEQ performance. Using daily dividend-adjusted closes of AIEQ and SPY from AIEQ inception (October 18, 2017) through December 2018, we find that: Keep Reading

Combining Fundamental Analysis and Portfolio Optimization

Can stock return forecasts from fundamental analysis make conventional mean-variance stock portfolio optimization work? In their December 2018 paper entitled “Optimized Fundamental Portfolios”, Matthew Lyle and Teri Yohn construct a portfolio that combines fundamentals-based stock return forecasts and mean-variance optimization and then compare results with portfolios from each employed separately. To suppress implementation costs, they focus on long-only portfolios reformed quarterly. Their fundamentals return forecasting model uses cross-sectionally normalized versions of book-to-market ratio, return on equity, change in net operating assets divided by book value and change in financial assets divided by book value. They update fundamental variables quarterly at the end of the reporting month. They generate stock return forecasts via a complicated multivariate regression of cross-sectionally normalized versions of the variables based on five years of rolling historical data. They then form a portfolio of the tenth (decile) of stocks with the highest expected returns, either value-weighted or equal-weighted. They consider several portfolio optimization methods, including minimum variance (requiring no return forecasts); mean-variance optimization with target expected return; and, Sharpe ratio maximization. Their combined approach employs fundamental stock return forecasts as inputs to those portfolio optimization methods that require returns. They use data from 1991-1995 to generate initial model inputs and 1996-2015 for out-of-sample testing. Using end-of-month data for a broad but groomed sample of U.S. common stocks with at least three years of historical data during January 1991 through December 2015, they find that:

Keep Reading

Trend Following: Momentum or Moving Average?

Are moving averages or intrinsic (time series) momentum theoretically better for following trends in asset prices? In their November 2018 paper entitled “Trend Following with Momentum Versus Moving Average: A Tale of Differences”, Valeriy Zakamulin and Javier Giner compare from a theoretical perspective effectiveness of four popular trend following rules:

  1. Intrinsic Momentum – buy (sell) when the closing price at the end of a specified lookback interval is greater (less) than the closing price at the beginning of the lookback interval.
  2. Simple Moving Average – buy (sell) when the closing price at the end of a specified lookback interval is greater (less) than the equally weighted average closing price during the lookback interval.
  3. Linear Moving Average – buy (sell) when the closing price at the end of a specified lookback interval is greater (less) than the linearly weighted (weights linearly increasing to the most recent) average closing price during the lookback interval.
  4. Exponential Moving Average – buy (sell) when the closing price at the end of a specified lookback interval is greater (less) than the exponentially weighted (weights exponentially increasing to the most recent) average closing price during the lookback interval.

They transform these price rules into return-based versions and create a trend model as an autoregressive return process. They then explore interactions of the trading rules with the trend model. Based on this theoretical approach, they conclude that: Keep Reading

Momentum and Bubble Stocks

Do “bubble” stocks (those with high shorting demand and small borrowing supply) exhibit unconventional momentum behaviors? In their December 2018 paper entitled “Overconfidence, Information Diffusion, and Mispricing Persistence”, Kent Daniel, Alexander Klos and Simon Rottke examine how momentum effects for bubble stocks differ from conventional momentum effects. They each month sort stocks into groups independently as follows:

  1. Momentum winners (losers) are the 30% of stocks with the highest (lowest) returns from one year ago to one month ago, incorporating a skip-month.
  2. Stocks with high (low) shorting demand are those with the top (bottom) 30% of short interest ratios.
  3. Stocks with small (large) borrowing supply are those with the top (bottom) 30% of institutional ownerships.

They then use intersections of these groups to reform 27 value-weighted portfolios. Bubble (constrained) stocks are those in the intersection of high shorting demand and low institutional ownership, including both momentum winners and losers. For purity, they further split bubble losers into those that were or were not also bubble winners within the past five years. Using monthly and daily returns, market capitalizations and trading volumes for a broad sample of U.S. common stocks, monthly short interest ratios and quarterly institutional ownership data from SEC Form 13F filings during July 1988 through June 2018, they find that: Keep Reading

Weekly Summary of Research Findings: 1/7/19 – 1/11/19

Below is a weekly summary of our research findings for 1/7/19 through 1/11/19. These summaries give you a quick snapshot of our content the past week so that you can quickly decide what’s relevant to your investing needs.

Subscribers: To receive these weekly digests via email, click here to sign up for our mailing list. Keep Reading

Inflation Forecast Update

The Inflation Forecast now incorporates actual total and core Consumer Price Index (CPI) data for December 2018. The actual total (core) inflation rate for December is lower than (about the same as) forecasted.

Continue to archive for older articles