Objective research to aid investing decisions
Menu
Value Allocations for October 2019 (Final)
Cash TLT LQD SPY
Momentum Allocations for October 2019 (Final)
1st ETF 2nd ETF 3rd ETF

Equity Options

Can investors/speculators use equity options to boost return through buying and selling leverage (calls), and/or buying and selling insurance (puts)? If so, which strategies work best? These blog entries relate to trading equity options.

Are Equity Put-Write ETFs Working?

Is systematically selling equity put options, as implemented by exchange-traded funds (ETF), attractive? To investigate, we consider four equity put-write ETFs, two dead and two living:

  1. US Equity High Volatility Put Write (HVPW) – oriented toward individual stocks (dead).
  2. ALPS Enhanced Put Write Strategy (PUTX) – index-oriented (dead).
  3. WisdomTree CBOE S&P500 PutWriteStrat (PUTW) – index-oriented (living).
  4. BMO US Put Write (ZPW.TO) – oriented toward individual stocks (living).

Because available samples are short, we focus on daily return correlation with SPY, average daily return, standard deviation of daily returns and sample period cumulative return. For the living ETFs, we include maximum drawdowns (MaxDD) based on daily data. We consider SPDR S&P 500 (SPY) and CBOE S&P 500 PutWrite Index (PUT) as benchmarks. Using daily returns for the four ETFs as available through early September 2019, and contemporaneous daily returns for SPY and PUT, we find that: Keep Reading

Option Valuation

How do market makers and sophisticated investors/traders determine option value? In his July 2019 essay entitled “Trading Volatility”, Emanuel Derman outlines the history and shortcomings of option valuation as described by the Black-Scholes model, which estimates the value of an option on an asset as a function of the asset’s price and volatility. He also addresses extensions of this model. Based on mathematical derivations and his knowledge of option markets, he concludes that:

Keep Reading

Are Equity Index Covered Call ETFs Working?

Is systematically selling covered call options on equity indexes, as implemented by exchange-traded funds (ETF), attractive? To investigate, we consider four equity covered call ETFs:

  1. Invesco S&P 500 BuyWrite ETF (PBP) – seeks to track the CBOE S&P 500 BuyWrite Index (BXM).
  2. Global X S&P 500 Covered Call ETF (HSPX) – seeks to track the CBOE S&P 500 2% OTM BuyWrite Index (BXY).
  3. Global X NASDAQ 100 Covered Call ETF (QYLD) – seeks to track the CBOE NASDAQ-100 BuyWrite Index (BXN).
  4. First Trust BuyWrite Income ETF (FTHI) – sells at-the-money to slightly out-of-the-money covered calls on the S&P 500 Index, laddered with expirations of less than one year (we use BXM as a benchmark).

We focus on average monthly return, standard deviation of monthly returns, sample period cumulative return and maximum drawdown (MaxDD) based on monthly data. We consider SPDR S&P 500 (SPY) and Invesco QQQ Trust (QQQ) as underlying stock indexes. Using monthly dividend-adjusted returns for the four covered call ETFs since inceptions and for all benchmarks/underlying indexes through June 2019, we find that: Keep Reading

Best U.S. Equity Market Hedge Strategy?

What steps should investors consider to mitigate impact of inevitable large U.S. stock market corrections? In their May 2019 paper entitled “The Best of Strategies for the Worst of Times: Can Portfolios be Crisis Proofed?”, Campbell Harvey, Edward Hoyle, Sandy Rattray, Matthew Sargaison, Dan Taylor and Otto Van Hemert compare performances of an array of defensive strategies with focus on the eight worst drawdowns (deeper than -15%) and three NBER recessions during 1985 through 2018, including:

  1. Rolling near S&P 500 Index put options, measured via the CBOE S&P 500 PutWrite Index.
  2. Credit protection portfolio that is each day long (short) beta-adjusted returns of duration-matched U.S. Treasury futures (BofAML US Corp Master Total Return Index), scaled retrospectively to 10% full-sample volatility.
  3. 10-year U.S. Treasury notes (T-notes).
  4. Gold futures.
  5. Multi-class time-series (intrinsic or absolute) momentum portfolios applied to 50 futures contract series and reformed monthly, with:
    • Momentum measured for 1-month, 3-month and 12-month lookback intervals.
    • Risk adjustment by dividing momentum score by the standard deviation of security returns.
    • Risk allocations of 25% to currencies, 25% to equity indexes, 25% to bonds and 8.3% to each of agricultural products, energies and metals. Within each group, markets have equal risk allocations.
    • Overall scaling retrospectively to 10% full-sample volatility.
    • With or without long equity positions.
  6. Beta-neutral factor portfolios that are each day long (short) stocks of the highest (lowest) quality large-capitalization and mid-capitalization U.S. firms, based on profitability, growth, balance sheet safety and/or payout ratios.

They further test crash protection of varying allocations to the S&P 500 Index and a daily reformed hedge consisting of equal weights to: (1) a 3-month time series momentum component with no long equity positions and 0.7% annual trading frictions; and, (2) a quality factor component with 1.5% annual trading frictions. For this test, they scale retrospectively to 15% full-sample volatility. Throughout the paper, they assume cost of leverage is the risk-free rate. Using daily returns for the S&P 500 Index and inputs for the specified defensive strategies during 1985 through 2018, they find that:

Keep Reading

Stock Return Autocorrelations and Option Returns

Does return persistence of individual stocks predict associated option returns? In their March 2019 paper entitled “Stock Return Autocorrelations and the Cross Section of Option Returns”, Yoontae Jeon, Raymond Kan and Gang Li investigate relationships between equity option returns and return autocorrelations of underlying stocks. They consider call options, put options and straddles (long both a call and a put with the same strike price). Each month on standard option expiration date, they:

  • Measure one-step monthly stock return autocorrelations using a 36-month rolling window of monthly returns for U.S. stocks with over 20 monthly observations.
  • Rank stocks (and respective options) by autocorrelation into fifths (quintiles).
  • Construct a hedge portfolio that is long (short) the equal-weighted or market capitalization-weighted stocks in the top (bottom) quintile of autocorrelations, to calculate stock portfolio return as a control variable.
  • Construct corresponding hedge portfolios of call options, put options or straddles, limiting choices to reasonably liquid options with moneyness closest to 1.0 and time to expiration closest to 30 days. 
  • Hold these portfolios until the next standard option expiration date.

They further explore out-of-sample use of results via modified mean-variance optimization of a portfolio consisting of the S&P 500 Index, the risk-free asset and equity options with bid-ask spreads no greater than 10% of price. They size individual option positions as a function of underlying stock volatility, variance risk premium and stock return autocorrelation. They assume investor utility derives from constant relative risk aversion level 3. For the frictionless case, they base option returns on the bid-ask midpoint. For the case with frictions, they assume buys (sells) occur at the ask (bid). Using specified stock and options data during January 1996 through December 2017, they find that: Keep Reading

Sell Equity Index OTM Put Options and ATM Straddles?

Does accounting for realistic trading frictions support beliefs that equity index out-of-the money (OTM) put options and at-the-money (ATM) straddles are systematically overpriced? In their October 2018 paper entitled “Index Option Anomalies: How Real Are They?”, Michal Czerwonko and Stylianos Perrakis re-examine assumptions and data used in several high-profile studies finding that OTM put options and ATM straddles for the S&P 500 Index are overpriced, and that shorting these positions is therefore reliably profitable. They focus on the following aspects of option pricing: accounting for realistic trading frictions (bid-ask spreads); differences in pricing of same-strike price puts and calls; and, inconsistency in pricing across maturities. Using groomed intraday prices and quotes for S&P 500 Index (cash-settled) options 28, 14, and seven days to maturity during January 1990 through February 2013 (278 settlement dates), they find that:

Keep Reading

Equity Index Options to Exploit Stock Market Volatility Spikes?

Under what conditions should speculators buy protective equity options when they expect realized stock market volatility to increase? In their September 2018 paper entitled “Being Right is Not Enough: Buying Options to Bet on Higher Realized Volatility”, Roni Israelov and Harsha Tummala analyze the relationship between: (1) long volatility return (delta-hedged options) and same-interval changes in realized volatility; and, (2) the volatility risk premium (VRP, implied volatility minus realized volatility) and same-interval changes in realized volatility. They specify long volatility as a portfolio of cash-settled equity index options, reformed monthly, that:

  • On each options expiration date, buys one-third of a -25 delta put option, one-third of a +25 delta call option and one-sixth each of at-the-money put and call options. All options initially have about a month to expiration.
  • Each day until expiration, hedges option deltas via equity index futures. 
  • Holds the options to expiration.

They also examine sensitivity of outcome to different portfolio initiation and termination points relative to significant volatility increases. They focus on the S&P 500 Index, using VIX as implied volatility and hedging via S&P 500 Index futures, during January 1996 through December 2016. They also consider for robustness testing corresponding data for Eurostoxx 50, FTSE 100 and Nikkei 225. Using daily data as specified, they find that:

Keep Reading

Simple Stock Index Option Strategies

Do simple stock index option strategies (stock-covered calls, cash-covered puts and collars) outperform the underlying index? To investigate, we examine first the performance of the CBOE S&P 500 BuyWrite Index (BXM), the CBOE S&P 500 PutWrite Index (PUT) and the CBOE S&P 500 95-110 Collar Index (CLL), with the S&P 500 Total Return Index SPTR) as a benchmark. Since these series are modeled indexes rather than tradable assets, we then examine the comparatively short records of exchange-traded funds (ETF) and notes (ETN) designed to track BXM, iPath CBOE S&P 500 BuyWrite Index ETN (BWV) and PowerShares S&P 500 BuyWrite (PBP), with SPDR S&P 500 (SPY) as a benchmark. We focus on monthly return statistics, compound annual growth rates (CAGR) and maximum drawdowns (MaxDD) for comparisons. Using end-of-month levels/total returns for SPTR, BXM, PUT and CLL since June 1986, and for SPYBWV and PBP since December 2007 (limited by inception of PBP), all through February 2018, we find that:

Keep Reading

Shorting Equity Options to Automate Portfolio Rebalancing

Can investors refine portfolio rebalancing while capturing a volatility risk premium (VRP) by systematically shorting options matched to target allocations of the underlying asset? In their October 2017 paper entitled “An Alternative Option to Portfolio Rebalancing”, Roni Israelov and Harsha Tummala explore multi-asset class portfolio rebalancing via an option selling overlay. The overlay sells out-of-the-money options such that, if stocks rise (fall), counterparties exercise call (put) options and the portfolio must sell (buy) shares. They intend their approach to counter short-term momentum exposure between rebalancings (when the portfolio is overweight winners and underweight losers) with short-term reversal exposure inherent in short options. For testing, they assume: (1) a simple 60%-40% stocks-bonds portfolio; (2) bond returns are small compared to stock returns (so only the stock allocation requires rebalancing); and, (3) option settlement via share transfer, as for SPDR S&P 500 (SPY) as the stock/option positions. They each month sell nearest out-of-the-money S&P 500 Index  call and put options across multiple economically priced strikes and update the overlay intramonth if new economically priced strikes become available. Once sold, they hold the options to expiration. Using daily S&P 500 Total Return Index returns, Barclays US Aggregate Bond Index returns and closing bid/ask quotes for S&P 500 Index options equity options (with returns calculated in excess of the risk-free rate) during 1996 through 2015, they find that:

Keep Reading

Aggregate Stock Option Put-Call Ratio as Market Return Predictor

Do aggregate positions in put and call options on individual stocks, as indicators of sentiment of informed traders, predict future market returns? In their July 2017 paper entitled “Stock Return Predictability: Consider Your Open Options”, Farhang Farazmand and Andre de Souza examine the power of average value-weighted put option open interest divided by average value-weighted call option open interest in individual U.S. stocks (PC-OI) to predict U.S. stock market returns. Specifically, they:

  • Compute for each stock each day total put option open interest and total call option open interest.
  • Average daily values for each stock by month and weight by market capitalization.
  • Calculate PC-OI by dividing the sum of monthly capitalization-weighted average put option open interest by the sum of monthly capitalization-weighted call option open interest.
  • Each month, relate via regression monthly PC-OI to stock market return the next three months to determine the sign of the future return coefficient.
  • Each month, create a net signal from the sum of the signs of these coefficients from the last three monthly regressions. A positive (negative) sum indicates a long (short) position in the stock market and an offsetting short (long) position in the risk-free asset.

They further test whether PC-OI predictive power concentrates in stocks with unique informativeness as represented by high idiosyncratic volatility (individual stock return volatility unexplained via regression versus market returns). For comparison, they also test their model with S&P 500 index options. Using daily open interest for options on AMEX, NYSE and NASDAQ common stocks and on the S&P 500 Index with moneyness 0.8-1.2 and maturities 30-90 days, associated stock characteristics, and contemporaneous U.S. stock market returns during January 1996 through August 2014, they find that:

Keep Reading

Daily Email Updates
Login
Research Categories
Recent Research
Popular Posts