Objective research to aid investing decisions

Value Investing Strategy (Strategy Overview)

Allocations for September 2023 (Final)
Cash TLT LQD SPY

Momentum Investing Strategy (Strategy Overview)

Allocations for September 2023 (Final)
1st ETF 2nd ETF 3rd ETF

Sentiment Indicators

Investors/traders track a range of sentiments (consumer, investor, analyst, forecaster, management), searching for indications of the next swing of the psychological pendulum that paces financial markets. Usually, they view sentiment as a contrarian indicator for market turns (bad means good — it’s darkest before the dawn). These blog entries relate to relationships between human sentiment and the stock market.

Do the “Best Companies To Work For” Outperform?

A subscriber asked for corroboration of a claim that the “Best Companies To Work For” (BCTWF) substantially beat the overall stock market. To investigate, we:

  • Compile the employee survey-based top 10 BCTWF winners for 2014 through 2022 (nine years, so 90 companies).
  • Optimistically assume winner lists are available by the end of March each year (in fact, it appears to be early April).
  • Filter out private companies, leaving 37 BCTWF with publicly traded stocks.
  • Calculate annual returns for each of these 37 BCTWF stocks from the end of March in the year they win to the end of the next March.
  • Each year, form equal-weighted (EW) BCTWF portfolios and calculate average annual April-through-March gross returns.
  • Compare annual BCTWF EW strategy gross performance to that of Invesco QQQ Trust (QQQ) as a benchmark.

We focus on gross average annual return, standard deviation of annual returns, gross annual Sharpe ratio, compound annual growth rate (CAGR) and maximum drawdown (MaxDD) based on annual data as key performance metrics. We use the yield on 1-year U.S. Treasury bills (T-bill) as of the end of each March to calculate Sharpe ratios. Using annual dividend-adjusted BCTWF and QQQ returns and annual 1-year T-bill yields from the end of March 2014 through the end of March 2023, we find that: Keep Reading

AAPL Returns Around iPhone Series Release Dates

A subscriber asked how Apple Inc. (AAPL) stock behaves around unveiling of new iPhone models. To investigate, we identify 19 distinct iPhone series release dates from 6/29/07 through 9/16/22 and calculate average daily cumulative returns for AAPL from 21 trading days before release date (Day 0) through 63 trading days after release date. Two pairs of iPhone release dates overlap somewhat for this specification. As a benchmark, we calculate average daily cumulative returns for AAPL during this interval for all trading days. In case there is some confounding factor (seasonal?), we repeat these calculations for Invesco QQQ Trust (QQQ). Using the selected iPhone series release dates and daily dividend/split-adjusted prices for AAPL and QQQ from the end of May 2007 through mid-December 2022, we find that: Keep Reading

Consumer Sentiment and Stock Market Returns

Business media and expert commentators sometimes cite the monthly University of Michigan Consumer Sentiment Index as an indicator of U.S. economic and stock market health, generally interpreting a jump (drop) in sentiment as good (bad) for future consumption and stocks. The release schedule for this indicator is mid-month for a preliminary reading on the current month and end-of-month for a final reading. Is this indicator predictive of U.S. stock market behavior in subsequent months? Using monthly final Consumer Sentiment Index data and monthly levels of the S&P 500 Index during January 1978 through July 2023, we find that: Keep Reading

Active Investment Managers and Market Timing

Do active investment managers as a group successfully time the stock market? The National Association of Active Investment Managers (NAAIM) is an association of registered investment advisors. “NAAIM member firms who are active money managers are asked each week to provide a number which represents their overall equity exposure at the market close on a specific day of the week (usually Wednesday). Responses can vary widely [200% Leveraged Short; 100% Fully Short; 0% (100% Cash or Hedged to Market Neutral); 100% Fully Invested; 200% Leveraged Long].” The association each week releases (usually on Thursday) the average position of survey respondents as the NAAIM Exposure Index (NEI).” Using historical weekly survey data and Thursday-to-Thursday weekly dividend-adjusted returns for SPDR S&P 500 (SPY) over the period July 2006 through late July 2023, we find that: Keep Reading

AAII Investor Sentiment as a Stock Market Indicator

Is conventional wisdom that aggregate retail investor sentiment is a contrary indicator of future stock market return correct? To investigate, we examine the sentiment expressed by members of the American Association of Individual Investors (AAII) via a weekly survey of members. This survey asks AAII members each week (Thursday through Wednesday): “Do you feel the direction of the market over the next six months will be up (bullish), no change (neutral) or down (bearish)?” Only one vote per member is accepted in each weekly voting period.” Survey results are available the market day after the polling period. We define aggregate (net) investor sentiment as percent bullish minus percent bearish. Using outputs of the weekly AAII surveys and prior-day closes of the S&P 500 Index from July 1987 through late July 2023, we find that: Keep Reading

Using VIX and Investor Sentiment to Explain Stock Market Returns

Do stock market return volatility (as a measure of risk) and aggregate investor sentiment (as a measure of risk tolerance) work well jointly to explain stock market returns? In their June 2023 paper entitled “Time-varying Equity Premia with a High-VIX Threshold and Sentiment”, Naresh Bansal and Chris Stivers investigate the in-sample power an optimal CBOE Volatility Index (VIX) threshold rule and a linear Baker-Wurgler investor sentiment relationship to explain future variation in U.S. stock market excess return (relative to U.S. Treasury bill yield). They skip one month between VIX/sentiment measurements and stock market returns to accommodate investor digestion of new information. They consider return horizons of 1, 3, 6 and 12 months. They also extend this 2-factor model to include the lagged Treasury implied-volatility index (ICE BofAML MOVE Index) as a third explanatory variable. Using monthly excess stock market return and VIX during January 1990 through December 2022, monthly  investor sentiment during January 1990 through June 2022 and monthly MOVE index during October 1997 through December 2022, they find that:

Keep Reading

ChatGPT News-based Forecasts of Stock Market Returns

Are the latest forms of artificial intelligence (AI) better at forecasting stock market returns than humans? In his February 2023 preliminary paper entitled “Surveying Generative AI’s Economic Expectations”, Leland Bybee summarizes results of monthly and quarterly forecasts by a large language model (ChatGPT-3.5) of U.S. stock market returns and 13 economic variables based on samples of Wall Street Journal (WSJ) news articles. He uses the S&P 500 Index as a proxy for the U.S. stock market. He asks ChatGPT to provide reasons for responses. He compares accuracy of ChatGPT forecasts to those from: (1) surveys of humans, including the Survey of Professional Forecasters, the American Association of Individual Investors (AAII) and the Duke CFO Survey; and, (2) a wide range of fundamental and economic predictors tested in past research. Using monthly samples of 300 randomly selected WSJ news articles, results of human surveys and various fundamental/economic data during 1984 through 2021, he finds that:

Keep Reading

Shapes of U.S. Stock Market Bull and Bear States

What kind of return patterns are typical of beginnings and ends of equity bull and bear markets? In his April 2023 paper entitled “Investor Overreaction: Evidence From Bull and Bear Markets”, Valeriy Zakamulin examines return patterns of U.S. stock market bull and bear states as a way to decide when investors tend to overreact. He uses the S&P 500 Index as a proxy for the U.S. stock market. He applies a pattern recognition algorithm to: (1) identify index peaks and troughs; and, (2) ensure that a full bear-bull cycle lasts at least 16 months and bear or bull states last at least 5 months, unless the index rises or falls by more than 20%. He then standardizes the duration of each market state to 10 intervals and assumes that the bull or bear return evolves quadratically with state age. Because the available sample is relatively small, he applies bootstrapping to enhance reliability of findings. Using monthly S&P 500 Index returns (excluding dividends) during January 1926 through December 2022, he finds that: Keep Reading

ChatGPT as Stock Sentiment Analyst

Can advanced natural language processing models such as ChatGPT extract sentiment from firm news headlines that usefully predicts associated next-day stock returns? In their April 2023 paper entitled “Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models”, Alejandro Lopez-Lira and Yuehua Tang test the ability of ChatGPT to predict next-day returns of individual stocks via analysis of relevant article and press release headlines from RavenPack, a leading provider of news sentiment data. They pre-process the headlines to ensure unique content and high relevance to a specific firm. They next instruct ChatGPT to designate whether each headline is good, bad or irrelevant for firm stock price, as follows:

“Forget all your previous instructions. Pretend you are a financial expert. You are
a financial expert with stock recommendation experience. Answer “YES” if good
news [+1], “NO” if bad news [-1} , or “UNKNOWN” if uncertain in the first line [0]. Then
elaborate with one short and concise sentence on the next line. Is this headline
good or bad for the stock price of _company_name_ in the _term_ term?”

They then compute a ChatGPT score for each stock in the news (averaging if there is more than one headline for a firm) and relate all stock scores to stock returns lagged by one day. They further compare predictive powers of ChatGPT sentiment scores to those provided by RavenPack. Using daily returns for a broad sample of U.S. common stocks and daily news headlines from RavenPack during October 2021 (post-training period for ChatGPT) through December 2022, they find that: Keep Reading

Survey-based Stock Market Return Forecasts

Can surveys of various expert and inexpert groups usefully predict stock market returns? In their March 2023 paper entitled “How Accurate Are Survey Forecasts on the Market?”, Songrun He, Jiaen Li and Guofu Zhou assess abilities of the following three surveys to predict S&P 500 Index returns:

For comparison, they also look at two other predictors, one based on a set of economic variables and the other based on aggregate short interest for U.S. stocks. Their benchmark forecast is a simple random walk tethered to the historical mean return. They test forecast accuracies statistically and gauge the economic value of each forecast based on out-of-sample certainty equivalence gain and Sharpe ratio for a portfolio that times the S&P 500 Index based on the forecast (versus buying and holding the index). Using data for the selected surveys, the set of economic variables, aggregate short interest for U.S. stocks and the S&P 500 Index as available (various start dates) through December 2020, they find that: Keep Reading

Login
Daily Email Updates
Filter Research
  • Research Categories (select one or more)