Objective research to aid investing decisions

Value Investing Strategy (Read Overview)

Allocations for January 2020 (Final)
Cash TLT LQD SPY

Momentum Investing Strategy (Read Overview)

Allocations for January 2020 (Final)
1st ETF 2nd ETF 3rd ETF

Technical Trading

Does technical trading work, or not? Rationalists dismiss it; behavioralists investigate it. Is there any verdict? These blog entries relate to technical trading.

Seasonal, Technical and Fundamental S&P 500 Index Timing Tests

Are there any seasonal, technical or fundamental strategies that reliably time the U.S. stock market as proxied by the S&P 500 Total Return Index? In the February 2018 version of his paper entitled “Investing In The S&P 500 Index: Can Anything Beat the Buy-And-Hold Strategy?”, Hubert Dichtl compares excess returns (relative to the U.S. Treasury bill [T-bill] yield) and Sharpe ratios for investment strategies that time the S&P 500 Index monthly based on each of:

  • 4,096 seasonality strategies.
  • 24 technical strategies (10 slow-fast moving average crossover rules; 8 intrinsic [time series or absolute] momentum rules; and, 6 on-balance volume rules).
  • 18 fundamental variable strategies based on a rolling 180-month regression, with 1950-1965 used to generate initial predictions.

In all cases, when not in stocks, the strategies hold T-bills as a proxy for cash. His main out-of-sample test period is 1966-2014, with emphasis on a “crisis” subsample of 2000-2014. He includes extended tests on seasonality and some technical strategies using 1931-2014. He assumes constant stock index-cash switching frictions of 0.25%. He addresses data snooping bias from testing multiple strategies on the same sample by applying Hansen’s test for superior predictive ability. Using monthly S&P 500 Index levels/total returns and U.S. Treasury bill yields since 1931 and values of fundamental variables since January 1950, all through December 2014, he finds that:

Keep Reading

Reducing Downside Risk of Trend Following Strategies

How can investors suppress the downside of trend following strategies? In their July 2019 paper entitled “Protecting the Downside of Trend When It Is Not Your Friend”, flagged by a subscriber, Kun Yan, Edward Qian and Bryan Belton test ways to reduce downside risk of simple trend following strategies without upside sacrifice. To do so, they: (1) add an entry/exit breakout rule to a past return signal to filter out assets that are not clearly trending; and, (2) apply risk parity weights to assets, accounting for both their volatilities and correlations of their different trends. Specifically, they each month:

  • Enter a long (short) position in an asset only if the sign of its past 12-month return is positive (negative), and the latest price is above (below) its recent n-day minimum (maximum). Baseline value for n is 200.
  • Exit a long (short) position in an asset only if the latest price trades below (above) its recent n/2-day minimum (maximum), or the 12-month past return goes negative (positive).
  • Assign weights to assets that equalize respective risk contributions to the portfolio based on both asset volatility and correlation structure, wherein covariances among assets adapt to whether an asset is trending up or down. They calculate covariances based on monthly returns from an expanding (inception-to-date) window with baseline 2-year half-life exponential decay.
  • Impose a 10% annual portfolio volatility target.

Their benchmark is a simpler strategy that uses only past 12-month return for trend signals and inverse volatility weighting with annual volatility target 40% for each asset. Their asset universe consists of 66 futures/forwards. They roll futures to next nearest contracts on the first day of the expiration month. They calculate returns to currency forwards using spot exchange rates adjusted for carry. Using daily prices for 23 commodity futures, 13 equity index futures, 11 government bond futures and 19 developed and emerging markets currency forwards as available during August 1959 through December 2017, they find that: Keep Reading

Intrinsic Momentum or SMA for Avoiding Crashes?

A subscriber suggested comparing intrinsic momentum (IM), also called absolute momentum and time series momentum, to simple moving average (SMA) as alternative signals for equity market entry and exit. To investigate across a wide variety of economic and market conditions, we measure the long run performances of entry and exit signals from IMs over past intervals of one to 12 months (IM1 through IM12) and SMAs ranging from 2 to 12 months (SMA2 through SMA12). We consider two cases for IM signals and one case for SMA signals, as applied to the S&P 500 Index as a proxy for the stock market and the 3-month U.S. Treasury bill (T-bill) as a proxy for cash (the risk-free rate). The three rule types are therefore:

  1. IMs Case 1 – in stocks (cash) when past index return is positive (negative).
  2. IMs Case 2 – in stocks (cash) when average monthly past index return is above (below) average monthly T-bill yield over the same interval.
  3. SMAs – in stocks (cash) when the index is above (below) the SMA.

We estimate S&P 500 Index monthly total returns using monthly dividend yield calculated from Shiller data. This estimation does not affect index timing signals. We focus on net compound annual growth rate (CAGR), maximum drawdown (MaxDD) and annual Sharpe ratio as key performance metrics, with baseline stocks-cash switching frictions 0.2%. We use buying and holding the S&P 500 Index (B&H) as a benchmark. Using monthly closes of the S&P 500 Index during December 1927 through November 2019 (92 years), and contemporaneous monthly index dividend and T-bill yields, we find that:

Keep Reading

SACEVS with SMA Filter

Does  applying a simple moving average (SMA) filter improve performance of the “Simple Asset Class ETF Value Strategy” (SACEVS), which seeks diversification across the following three asset class exchange-traded funds (ETF) plus cash according to the relative valuations of term, credit and equity risk premiums?

3-month Treasury bills (Cash)
iShares 20+ Year Treasury Bond (TLT)
iShares iBoxx $ Investment Grade Corporate Bond (LQD)
SPDR S&P 500 (SPY)

Since many technical traders use a 10-month SMA (SMA10), we test effectiveness of requiring that each of the ETFs pass an SMA10 filter by comparing performances for three scenarios:

  1. BaselineSACEVS as currently tracked.
  2. With SMA10 Filter – Run Baseline SACEVS and then apply SMA10 filters to dividend-adjusted prices of ETF allocations. If an allocated ETF is above (below) its SMA10, hold the allocation as specified (Cash). This rule is inapplicable to any Cash allocation.
  3. With Half SMA10 Filter – Same as scenario 2, but, if an allocated ETF is above (below) its SMA10, hold the allocation as specified (half the specified allocation and half cash at the T-bill yield).

We focus on gross compound annual growth rates (CAGR), maximum drawdowns (MaxDD) and annual Sharpe ratios (using average monthly T-bill yield during a year as the risk-free rate for that year) of SACEVS Best Value and SACEVS Weighted portfolios. We also look at how the SMA rule affects a 60%-40% SPY-TLT benchmark (60-40) portfolio. Using SACEVS historical data and monthly dividend-adjusted closing prices for the asset class proxies and yield for Cash during July 2002 (the earliest all ETFs are available) through November 2019, we find that: Keep Reading

Bollinger Bands: Buy Low and Sell High?

Are Bollinger Bands (BB) useful for deciding when to buy low and when to sell high the overall U.S. stock market? In other words, can an investor beat a buy-and-hold strategy by systematically buying (selling) when the market crosses below (above) the lower (upper) BB? To check, we examine the historical behavior of BBs around the 21-trading day (one month) simple moving average (SMA) of S&P 500 SPDR (SPY) as a tradable proxy for the U.S. stock market, with 3-month Treasury bill (T-bill) yield as the return on cash when not in SPY. We consider BB settings ranging from 0.5 to 2.5 standard deviations of daily returns, calculated over the same trailing 21 trading days. We focus on net compound annual growth rate (CAGR), maximum drawdown (MaxDD) and annual Sharpe ratio (with average daily T-bill yield during a year as the risk-free rate for that year) as key performance metrics. Baseline SPY-cash switching frictions are 0.2%. Using daily unadjusted closes of of SPY (to calculate BBs), dividend-adjusted closes of SPY (to calculate total returns) and contemporaneous T-bill yield from the end of January 1993 (SPY inception) through late November 2019, we find that: Keep Reading

Hold Stocks Only After All-time Market Highs?

A subscriber asked for verification of the finding in “Is Buying Stocks at an All-Time High a Good Idea?” that it is not only a good idea, but a great one, including comparison to a moving average crossover rule. To investigate, we use the S&P 500 Index as a proxy for the U.S. stock market and test a strategy that holds SPDR S&P 500 (SPY) when the S&P 500 Index stands at an all-time high at the end of last month and otherwise holds Vanguard Long-Term Treasury Fund Investor Shares (VUSTX). We compare results to buying and holding SPY, buying and holding VUSTX, and holding SPY (VUSTX) when the S&P 500 Index is above (below) its 10-month simple moving average (SMA10) at the end of last month. We assume 0.1% switching frictions. We compute average net monthly return, standard deviation of monthly returns, net monthly Sharpe ratio (with monthly T-bill yield as the risk-free rate), net compound annual growth rate (CAGR) and maximum drawdown (MaxDD) as key strategy performance metrics. We calculate the number of switches for each scenario to indicate sensitivities to switching frictions and taxes. Using monthly closes for the S&P 500 Index, SPY and VUSTX during January 1993 (inception of SPY) through October 2019, we find that:

Keep Reading

Combining Economic Policy Uncertainty and Stock Market Trend

A subscriber requested, as in “Combine Market Trend and Economic Trend Signals?”, testing of a strategy that combines: (1) U.S. Economic Policy Uncertainty (EPU) Index, as described and tested separately in “Economic Policy Uncertainty and the Stock Market”; and, (2) U.S. stock market trend. We consider two such combinations. The first combines:

  • 10-month simple moving average (SMA10) for the broad U.S. stock market as proxied by the S&P 500 Index. The trend is bullish (bearish) when the index is above (below) its SMA10 at the end of last month.
  • Sign of the change in EPU Index last month. A positive (negative) sign is bearish (bullish).

The second combines:

  • SMA10 for the S&P 500 Index as above.
  • 12-month simple moving average (SMA12) for the EPU Index. The trend is bullish (bearish) when the EPU Index is below (above) its SMA12 at the end of last month.

We consider alternative timing strategies that hold SPDR S&P 500 (SPY) when: the S&P 500 Index SMA10 is bullish; the EPU Index indicator is bullish; either indicator for a combination is bullish; or, both indicators for a combination are bullish. When not in SPY, we use the 3-month U.S. Treasury bill (T-bill) yield as the return on cash, with 0.1% switching frictions. We assume all indicators for a given month can be accurately estimated for signal execution at the market close the same month. We compute average net monthly return, standard deviation of monthly returns, net monthly Sharpe ratio (with monthly T-bill yield as the risk-free rate), net compound annual growth rate (CAGR) and maximum drawdown (MaxDD) as key strategy performance metrics. We calculate the number of switches for each scenario to indicate sensitivities to switching frictions and taxes. Using monthly values for the EPU Index, the S&P 500 Index, SPY and T-bill yield during January 1993 (inception of SPY) through October 2019, we find that:

Keep Reading

Using RSI(2) to Trade Leveraged ETFs

A subscriber asked for an update on the effectiveness of applying a two-period Relative Strength Index, RSI(2), to leveraged exchange-traded funds (ETF), with two pairs of trade entry (oversold) and exit (overbought) settings:

  1. Buy when RSI(2) falls below 10 and sell when it subsequently rises over 90 (10-90).
  2. More conservatively, buy when RSI(2) falls below 5 and exit when it subsequently rises over 70 (5-70).

To investigate, we run simple tests on ProShares Ultra S&P 500 (SSO) with RSI(2) calculations based on the RSI template from StockCharts. Using daily adjusted SSO opens and closes during July 2006 (the first full month SSO is available) through October 2019, we find that: Keep Reading

Combine Market Trend and Economic Trend Signals?

A subscriber requested review of an analysis concluding that combining economic trend and market trend signals enhances market timing performance. Specifically, per the example in the referenced analysis, we look at combining:

  • The 10-month simple moving average (SMA10) for the broad U.S. stock market. The trend is positive (negative) when the market is above (below) its SMA10.
  • The 12-month simple moving average (SMA12) for the U.S. unemployment rate (UR). The trend is positive (negative) when UR is below (above) its SMA12.

We consider scenarios when the stock market trend is positive, the UR trend is positive, either trend is positive or both trends are positive. We consider two samples: (1) dividend-adjusted SPDR S&P 500 (SPY) since inception at the end of January 1993 (nearly 26 years); and, (2) the S&P 500 Index (SP500) since January 1948 (limited by UR availability), adjusted monthly by estimated dividends from the Shiller dataset, for longer-term robustness tests (nearly 71 years). Per the referenced analysis, we use the seasonally adjusted civilian UR, which comes ultimately from the Bureau of Labor Statistics (BLS). BLS generally releases UR monthly within a few days after the end of the measured month. We make the simplifying assumptions that UR for a given month is available for SMA12 calculation and signal execution at the market close for that same month. When not in the stock market, we assume return on cash from the broker is the yield on 3-month U.S. Treasury bills (T-bill). We focus on gross compound annual growth rate (CAGR), maximum drawdown (MaxDD) and annual Sharpe ratio as key performance metrics. We use the average monthly T-bill yield during a year as the risk-free rate for that year in Sharpe ratio calculations. While we do not apply any stocks-cash switching frictions or tax considerations, we do calculate the number of switches for each scenario. Using specified monthly data through September 2019, we find that: Keep Reading

“Best” Indicator Consistency Across Samples

A subscriber inquired whether “The Only Indicator You Will Ever Need” really works. This technical indicator, a form of the Coppock Guide (or curve or indicator), applied to the Dow Jones Industrial Average by Jay Kaeppel, is a multi-parameter composite based on monthly closes as follows:

  1. Calculate the asset’s return over the past 11 months.
  2. Calculate the asset’s return over the past 14 months.
  3. Average these two past returns.
  4. Each month, calculate the 10-month front-weighted moving average (WMA) of this average (multiply the most recent value by 10, the next most recent by 9, the value for the month before that by 8, etc). Then sum the products and divide by 55.
  5. Hold the asset (cash) if this WMA is above (below) its value three months ago.

We designate this indicator 11-14WMA3. To test 11-14WMA3 in realistic scenarios, we apply it to the entire available histories for three exchange-traded funds (ETF): SPDR S&P 500 (SPY), SPDR Dow Jones Industrial Average (DIA) and iShares Russell 2000 (IWM). We consider buy-and-hold and a conventional 10-month simple moving average timing strategy (SMA10) as benchmarks. SMA10 holds the ETF (cash) when the ETF’s most recent monthly close is above (below) its 10-month SMA. Using monthly dividend-adjusted and unadjusted closes for the ETFs from their respective inceptions through September 2019 and contemporaneous 3-month U.S. Treasury bill (T-bill) yield, we find that: Keep Reading

Login
Daily Email Updates
Filter Research
  • Research Categories