# Technical Trading

Does technical trading work, or not? Rationalists dismiss it; behavioralists investigate it. Is there any verdict? These blog entries relate to technical trading.

**January 19, 2018** - Economic Indicators, Technical Trading

A subscriber proposed: “It would be interesting to do an analysis of the Chemical Activity Barometer [CAB] to see if it has predictive value for the stock market. Either [look] at stock prices when [CAB makes] a two percent pivot down [from a preceding 6-month high] as a sell signal and one percent pivot up as a buy signal…[or when CAB falls] below its x month moving average.” The American Chemistry Council claims that CAB “determines turning points and likely future trends of the wider U.S. economy” and leads other commonly used economic indicators. To investigate its usefulness for U.S. stock market timing, we consider the two proposed strategies, plus two benchmarks, as follows:

- CAB SMAx Timing – hold stocks (the risk-free asset) when monthly CAB is above (below) its simple moving average (SMA). We consider SMA measurement intervals ranging from two months (SMA2) to 12 months (SMA12).
- CAB Pivot Timing – hold stocks (the risk-free asset) when monthly CAB most recently crosses 1% above (2% below) its maximum value over the preceding six months. We look at a few alternative pivot thresholds.
- Buy and Hold (B&H) – buy and hold the S&P Composite Index.
- Index SMA10 – hold stocks (the risk-free asset) when the S&P Composite Index is above (below) its 10-month SMA (SMA10), assuming signal execution the last month of the SMA measurement interval.

Since CAB data extends back to 1912, we use Robert Shiller’s S&P Composite Index to represent the U.S. stock market. For the risk-free rate, we use the 3-month U.S. Treasury bill (T-bill) yield since 1934. Prior to 1934, we use Shiller’s long interest rate minus 1.59% (the average 10-year term premium since 1934). We assume a constant 0.25% friction for switching between stocks and T-bills as signaled. We focus on number of switches, compound annual growth rate (CAGR) and maximum drawdown (MaxDD) as key performance metrics. Using monthly data for CAB, the S&P Composite Stock Index, estimated dividends for the stocks in this index (for calculation of total returns) and estimated long interest rate during January 1912 through December 2017 (about 106 years), and the monthly T-bill yield since January 1934, *we find that:* Keep Reading

**December 19, 2017** - Economic Indicators, Technical Trading

In reaction to “Combine Market Trend and Economic Trend Signals?”, a subscriber suggested adding an interest rate trend signal to those for the U.S. stock market and U.S. unemployment rate for the purpose of timing the S&P 500 Index (SP500). To investigate, we look at combining:

We consider scenarios when the SP500 trend is positive, the UR trend is positive, the T-bill trend is positive, at least one trend is positive (>=1), at least two trends are positive (>=2) or all three trends are positive (All). For total return calculations, we adjust the SP500 monthly with estimated dividends from the Shiller dataset. When not in the index, we assume return on cash from the broker is the specified T-bill yield. We focus on gross compound annual growth rate (CAGR), maximum drawdown (MaxDD) and annual Sharpe ratio as key performance metrics. We use the average monthly T-bill yield during a year as the risk-free rate for that year in Sharpe ratio calculations. While we do not apply any stocks-cash switching frictions, we do calculate the number of switches for each scenario. Using the specified monthly data through October 2017, *we find that:* Keep Reading

**November 29, 2017** - Economic Indicators, Technical Trading

A subscriber requested review of an analysis concluding that combining economic trend and market trend signals enhances market timing performance. Specifically, per the example in the referenced analysis, we look at combining:

- The 10-month simple moving average (SMA10) for the broad U.S. stock market. The trend is positive (negative) when the market is above (below) its SMA10.
- The 12-month simple moving average (SMA12) for the U.S. unemployment rate (UR). The trend is positive (negative) when UR is below (above) its SMA12.

We consider scenarios when the stock market trend is positive, the UR trend is positive, either trend is positive or both trends are positive. We consider two samples: (1) dividend-adjusted SPDR S&P 500 (SPY) since inception at the end of January 1993 (24 years); and, (2) the S&P 500 Index (SP500) since January 1950, adjusted monthly by estimated dividends from the Shiller dataset, as a longer-term robustness test (67 years). Per the referenced analysis, we use the seasonally adjusted civilian UR, which comes ultimately from the Bureau of Labor Statistics (BLS). BLS generally releases UR monthly within a few days after the end of the measured month. When not in the stock market, we assume return on cash from the broker is the yield on 3-month U.S. Treasury bills (T-bill). We focus on gross compound annual growth rate (CAGR), maximum drawdown (MaxDD) and annual Sharpe ratio as key performance metrics. We use the average monthly T-bill yield during a year as the risk-free rate for that year in Sharpe ratio calculations. While we do not apply any stocks-cash switching frictions, we do calculate the number of switches for each scenario. Using the specified monthly data through October 2017, *we find that:* Keep Reading

**September 11, 2017** - Technical Trading

Is market breadth a reliable indicator of future stock market returns? To investigate, we perform simple tests on four daily U.S. stock market breadth metrics:

- RSP-SPY – Total return for Guggenheim S&P 500 Equal Weight (RSP) minus total return for SPDR S&P 500 (SPY).
- NYSE A/D – Number of NYSE advancing stocks divided by number of NYSE declining stocks.
- NYSE Up/Down Volume – Volume for NYSE advancing stocks divided by volume of NYSE declining stocks.
- NYSE 52-Week Highs-Lows – Number of NYSE 52-week highs minus number of NYSE 52-week lows.

We use SPY as a proxy for the U.S. stock market. We use correlation tests that assume linear relationships between breadth metrics and future SPY returns and ranking tests that do not. Samples commence May 2003 (initial RSP availability) for the first three and late October 2005 for the fourth. Using daily dividend-adjusted levels of RSP and SPY and daily data for components of the other three breadth metrics from specified start dates through most of August 2017, *we find that:* Keep Reading

**September 5, 2017** - Strategic Allocation, Technical Trading

Does simple asset price trend following based on 10-month simple moving average (SMA10) reliably boost the performance of retirement portfolios? In their July 2017 paper entitled “Can Sustainable Withdrawal Rates Be Enhanced by Trend Following?”, Andrew Clare, James Seaton, Peter Smith and Steve Thomas compare effects of asset class diversification and trend following on safe withdrawal rates from UK retirement portfolios. They consider 60-40 UK stocks-bonds, 30-70 UK stocks-bonds and equally weighted UK stocks, global stocks, bonds, commodities and UK real estate (EW Multi-asset). They further consider risk parity (RP) multi-asset (each class weighted by the inverse of its prior-year volatility) and 100% global stocks (equally weighted across five regions). They focus on a 20-year retirement period (but also consider 30-year), assume annual withdrawals the first day of each year and ignore taxes and rebalancing frictions. They use both in-sequence historical asset returns and Monte Carlo simulations (random draws with replacement from the historical annual returns of each portfolio). They apply trend following separately to each asset by holding the asset (cash) when asset price is above (below) its SMA10. Their key portfolio performance metric is Perfect Withdrawal Rate (PWR), the constant real (inflation-adjusted) withdrawal rate as a percentage of initial portfolio value that exactly exhausts the portfolio at the end of the retirement period. Using monthly total returns in pounds sterling for the selected asset classes and values of the UK consumer price index during 1970 through 2015, *they find that:* Keep Reading

**August 3, 2017** - Momentum Investing, Strategic Allocation, Technical Trading

Does an asset class breadth rule work better than a class-by-class exclusion rule for momentum strategy crash protection? In their July 2017 paper entitled “Breadth Momentum and Vigilant Asset Allocation (VAA): Winning More by Losing Less”, Wouter Keller and Jan Keuning introduce VAA as a dual momentum asset class strategy aiming at returns above 10% with drawdowns less than -20% deep. They specify momentum as the average of annualized total returns over the past 1, 3, 6 and 12 months. This specification gives greater weight to short lookback intervals than a simple average of past returns over these intervals. Specifically, they:

- Each month rank asset class proxies based on momentum.
- Each month select a “cash” holding as the one of short-term U.S. Treasury, intermediate-term U.S. Treasury and investment grade corporate bond funds with the highest momentum.
- Set (via backtest) a breadth protection threshold (B). When the number of asset class proxies with negative momentum (b) is equal to or greater than B, the allocation to “cash” is 100%. When b is less than B, the base allocation to “cash” is b/B.
- Set (via backtest) the number of top-performing asset class proxies to hold (T) in equal weights. When the base allocation to “cash” is less than 100% (so when b<B), allocate the balance to the top (1-b/B)T asset class proxies with highest momentum (irrespective of sign).
- Mitigate portfolio rebalancing intensity (when B and T are different) by rounding fractions b/B to multiples of 1/T.

They construct four test universes from: a short sample of 17 (mostly simulated) exchange traded fund (ETF)-like global asset class proxies spanning December 1969 through December 2016; and, a long sample of 21 index-like U.S. asset classes spanning December 1925 through December 2016. After reserving the first year for initial momentum calculations, they segment each sample into halves for in-sample optimization of B and T and out-of-sample testing. For all cases, they apply 0.1% one-way trading frictions for portfolio changes. Their key portfolio performance metrics are compound annual growth rate (CAGR), maximum drawdown (MaxDD) and a composite of the two. Using monthly returns for the selected ETF-like and index-like assets over respective sample periods, *they find that:*

Keep Reading

**June 21, 2017** - Technical Trading

A subscriber requested tests exploring whether a recent death cross for the Dow Jones Industrial Average (DJIA) portends an index crash. To investigate, we consider two ways of evaluating DJIA performance after death crosses and conversely defined golden crosses:

- Behavior of the index during the 126 trading days (six months) after death and golden crosses.
- Behavior of the index between converse crosses (death cross-to-golden cross, and golden cross-to-death cross).

We focus on distributions of average returns and maximum drawdowns (MaxDD) during specified periods. We also check robustness by repeating DJIA tests on the S&P 500 Index. Using daily DJIA closes since October 1928 and daily S&P 500 Index closes since January 1950, both through May 2017, *we find that:* Keep Reading

**June 2, 2017** - Calendar Effects, Technical Trading

A reader commented and asked:

“Some have suggested that the end-of-the-month effect benefits monthly simple moving average strategies that trade on the last day of the month. Is there an optimal day of the month for long-term SMA calculation and does the end-of-the-month effect explain the optimal day?”

To investigate, we compare 21 variations of a 10-month simple moving average (SMA10) timing strategy generated by shifting the monthly return calculation cycle relative to trading days from the end of the month (EOM). Specifically, the 21 variations represent calculation cycles ranging from 10 trading days before EOM (EOM-10) to 10 trading days after EOM (EOM+10). We apply the strategy to the S&P 500 Index as a proxy for the U.S. stock market. The strategy holds the S&P 500 Index (cash) whenever the index is above (below) its SMA10 as of the most recent monthly calculation. Using daily S&P 500 Index closes and 3-month Treasury bill (T-bill) yields as the return on cash during January 1990 through mid-May 2017, *we find that:* Keep Reading

**May 9, 2017** - Technical Trading

What makes trend-following tick? In the April 2017 version of his paper entitled “What Drives Trend-Following Profits?”, Adrian Zoicas-Ienciu investigates sources of trend-following profits in equity indexes and stocks. He focuses on daily trading signals for Dow Jones Industrial Average (DJIA) closing levels, as follows:

- Each day after the close, he compares the DJIA close to its simple moving average (SMA) plus or minus a buffer to suppress signal noise. If the close is above (below) the SMA plus (minus) the buffer, the signal is buy (sell). Otherwise the signal is neutral. He considers SMAs ranging from 2 to 250 trading days and signal buffers ranging from 1% to 5% for total of 1,245 rules.
- He implements signal changes at the next daily close by taking a 100% position in DJIA after a neutral signal, a (100%+x) position after a buy signal and a (100%-y) position after a sell signal. This approach allows separation of trend-following versus allocation effects. He assumes rebalancing friction 0.5% of traded value, cost of leverage (x) as the risk-free rate and return on cash (y) as the risk-free rate.
- He assesses rule performance principally as excess daily return versus buy-and-hold (B&H). He considers as alternative benchmarks the risk-free rate or a combination benchmark that is each day: B&H for a neutral signal; B&H for a buy signal; and, (100%-y) times B&H plus y times the risk-free rate for a sell signal.
- He assesses overall trend-following performance as the average performance of the 1,245 rules. He also considers the performance of an equally weighted portfolio of the top tenth (decile) of rules in each of 64 sequential 370-day subperiods.

He also evaluates the role of signal volatility (volume-weighted trading frequency) as a determinant of profitability. Using daily DJIA closing prices and 1-month U.S. Treasury bill (T-bill) yields as the risk-free rate during March 1926 through early October 2016, *he finds that:* Keep Reading

**April 26, 2017** - Momentum Investing, Technical Trading

Is there an easy way to turn conventional stock momentum crashes into gains? In the March 2017 version of her paper entitled “Dynamic Momentum and Contrarian Trading”, Victoria Dobrynskaya examines the timing of momentum crashes and tests a simple dynamic strategy designed to turn the crashes into gains. This strategy follows a conventional stock momentum strategy most of the time, but flips to a contrarian strategy for three months after each market plunge with a lag of one month. The conventional momentum hedge portfolio is each month long the tenth (decile) or third (tercile), depending on sample breadth, of stocks with the highest cumulative returns from 12 months ago to one month ago and short the tenth or third with the lowest cumulative returns. The contrarian hedge portfolio flips the long and short positions. For her baseline case, she defines a market plunge as a monthly return more than 1.5 standard deviations of monthly returns below the average monthly market return (measured in-sample). For most analyses, she employs the Fama-French U.S. equal-weighted and value-weighted extreme decile momentum hedge portfolios during January 1927 through July 2015. For global developed market analyses, she employs extreme tercile momentum hedge portfolios from various sources during November 1990 through March 2016. She also considers long-only momentum portfolios for emerging markets: one broad during June 1991 through March 2016) and one narrow (Latin American only) during June 1995 through March 2016. Using this data, *she finds that:* Keep Reading