Objective research to aid investing decisions

Value Investing Strategy (Strategy Overview)

Allocations for August 2020 (Final)
Cash TLT LQD SPY

Momentum Investing Strategy (Strategy Overview)

Allocations for August 2020 (Final)
1st ETF 2nd ETF 3rd ETF

Volatility Effects

Reward goes with risk, and volatility represents risk. Therefore, volatility means reward; investors/traders get paid for riding roller coasters. Right? These blog entries relate to volatility effects.

Safe Haven Benchmark Index

How should investors evaluate the effectiveness of a safe haven asset? In their July 2020 paper entitled “A Safe Haven Index”, Dirk Baur and Thomas Dimpfl devise and apply a safe haven index (SHI) to evaluate over 20 individual potential safe haven assets. SHI consists of seven equal-weighted assets: gold, Swiss franc, Japanese yen, 2-year, 10-year and 30-year U.S. Treasuries and 10-year German government bonds. For evaluations, they focus on four safe haven events: the October 1987 stock market crash, the September 2001 terrorist attacks, the September 2008 Lehman collapse and the March 2020 COVID-19 pandemic. Using daily data for index components and other potential safe haven assets as available during January 1985 through May 2020, they find that:

Keep Reading

Classic Stocks-Bonds Portfolios with Leveraged ETFs

Can investors use leveraged exchange-traded funds (ETF) to construct attractive versions of simple 60%/40% (60/40) and 40%/60% (40/60) stocks-bonds portfolios? In their March 2020 presentation package entitled “Robust Leveraged ETF Portfolios Extending Classic 40/60 Portfolios and Portfolio Insurance”, flagged by a subscriber, Mikhail Smirnov and Alexander Smirnov consider several variations of classic stocks/bonds portfolio as implemented with leveraged ETFs. They ultimately focus on a monthly rebalanced partially 3X-leveraged portfolio consisting of:

  • 40% ProShares UltraPro QQQ (TQQQ)
  • 20% Direxion Daily 20+ Year Treasury Bull 3X Shares (TMF)
  • 40% iShares 20+ Year Treasury Bond ETF (TLT)

To verify findings, we consider this portfolio and several 60/40 and 40/60 stocks/bonds portfolios. We look at net monthly performance statistics, along with compound annual growth rate (CAGR), maximum drawdown (MaxDD) based on monthly data and annual Sharpe ratio. To estimate monthly rebalancing frictions, we use 0.5% of amount traded each month. We use average monthly 3-month U.S. Treasury bill yield during a year as the risk-free rate in Sharpe ratio calculations for that year. Using monthly adjusted prices for TQQQ, TMF, TLT and for SPDR S&P 500 ETF Trust (SPY) and Invesco QQQ Trust (QQQ) to construct benchmarks during February 2010 (limited by TQQQ inception) through June 2020, we find that: Keep Reading

Test of Seasonal Risk Adjustment Strategy

A subscriber requested review of a strategy that seeks to exploit “Sell in May” by switching between risk-on assets during November-April and risk-off assets during May-October, with assets specified as follows:

On each portfolio switch date, assets receive equal weight with 0.25% overall penalty for trading frictions. We focus on compound annual growth rate (CAGR), maximum drawdown (MaxDD) measured at 6-month intervals and Sharpe ratio measured at 6-month intervals as key performance statistics. As benchmarks, we consider buying and holding SPY, IWM or TLT and a 60%-40% SPY-TLT portfolio rebalanced frictionlessly at the ends of April and October (60-40). Using April and October dividend-adjusted closes of SPY, IWM, PDP, TLT and SPLV as available during October 2002 (first interval with at least one risk-on and one risk-off asset) through April 2020, and contemporaneous 6-month U.S. Treasury bill (T-bill) yield as the risk-free rate, we find that: Keep Reading

Exploit U.S. Stock Market Dips with Margin?

A subscriber requested evaluation of a strategy that seeks to exploit U.S stock market reversion after dips by temporarily applying margin. Specifically, the strategy:

  • At all times holds the U.S. stock market.
  • When the stock market closes down more than 7% from its high over the past year, augments stock market holdings by applying 50% margin.
  • Closes each margin position after two months.

To investigate, we assume:

  • The S&P 500 Index represents the U.S. stock market for calculating drawdown over the past year (252 trading days).
  • SPDR S&P 500 (SPY) represents the market from a portfolio perspective.
  • We start a margin augmentation at the same daily close as the drawdown signal by slightly anticipating the drawdown at the close.
  • 50% margin is set at the opening of each augmentation and there is no rebalancing to maintain 50% margin during the two months (42 trading days) it is open.
  • If S&P 500 Index drawdown over the past year is still greater than 7% after ending a margin augmentation, we start a new margin augmentation at the next close.
  • Baseline margin interest is U.S. Treasury bill (T-bill) yield plus 1%, debited daily.
  • Baseline one-way trading frictions for starting and ending margin augmentations are 0.1% of margin account value.
  • There are no tax implications of trading.

We use buying and holding SPY without margin augmentation as a benchmark. Using daily levels of the S&P 500 Index, daily dividend-adjusted SPY prices and daily T-bill yields from the end of January 1993 (limited by SPY) through May 2020, we find that: Keep Reading

Rational Uses of Leveraged and Inverse ETPs

What are rational uses of leveraged and inverse exchange-traded products (ETP), which offer easy access to amplified positions in various benchmark indexes spanning stocks, bonds, commodities and volatility? In their April 2020 paper entitled “Levered and Inverse ETPs: Blessing or Curse?”, Colby Pessina and Robert Whaley review the mechanics of leveraged and inverse ETPs, simulate their expected performance of those based on six popular benchmarks and document actual performance of 35 ETPs. They employ Monte Carlo simulations assuming normally distributed log returns for underlying indexes, with mean and standard deviation estimates based on historical daily returns during December 20, 2005 through March 13, 2020. Using simulation inputs as specified and data for 35 actual ETPs as available through mid-March 2020, they find that:

Keep Reading

Are Low Volatility Stock ETFs Working?

Are low volatility stock strategies, as implemented by exchange-traded funds (ETF), attractive? To investigate, we consider eight of the largest low volatility ETFs, all currently available, in order of longest to shortest available histories:

We focus on monthly return statistics, along with compound annual growth rates (CAGR) and maximum drawdowns (MaxDD). Using monthly returns for the low volatility stock ETFs and their benchmark ETFs as available through April 2020, we find that: Keep Reading

Best Stock Portfolio Styles During and After Crashes

Are there equity styles that tend to perform relatively well during and after stock market crashes? In their April 2020 paper entitled “Equity Styles and the Spanish Flu”, Guido Baltussen and Pim van Vliet examine equity style returns around the Spanish Flu pandemic of 1918-1919 and five earlier deep U.S. stock market corrections (-20% to -25%) in 1907, 1903, 1893, 1884 and 1873. They construct three factors by:

  1. Separating stocks into halves based on market capitalization.
  2. Sorting the big half only into thirds based on dividend yield as a value proxy, 36-month past volatility or return from 12 months ago to one month ago. They focus on big stocks to avoid illiquidity concerns for the small half.
  3. Forming long-only, capitalization-weighted factor portfolios that hold the third of big stocks with the highest dividends (HighDiv), lowest past volatilities (Lowvol) or highest past returns (Mom).

They also test a multi-style strategy combining Lowvol, Mom and HighDiv criteria (Lowvol+) and a size factor calculated as capitalization-weighted returns for the small group (Small). Using data for all listed U.S. stocks during the selected crashes, they find that: Keep Reading

Comparing Ivy 5 Allocation Strategy Variations

A subscriber requested comparison of four variations of an “Ivy 5” asset class allocation strategy, as follows:

  1. Ivy 5 EW: Assign equal weight (EW), meaning 20%, to each of the five positions and rebalance annually.
  2. Ivy 5 EW + SMA10: Same as Ivy 5 EW, but take to cash any position for which the asset is below its 10-month simple moving average (SMA10).
  3. Ivy 5 Volatility Cap: Allocate to each position a percentage up to 20% such that the position has an expected annualized volatility of no more than 10% based on daily volatility over the past month, recalculated monthly. If under 20%, allocate the balance of the position to cash.
  4. Ivy 5 Volatility Cap + SMA10: Same as Ivy 5 Volatility Cap, but take completely to cash any position for which the asset is below its SMA10.

To perform the tests, we employ the following five asset class proxies:

iShares 7-10 Year Treasury Bond (IEF)
SPDR S&P 500 (SPY)
Vanguard REIT ETF (VNQ)
iShares MSCI EAFE Index (EFA)
PowerShares DB Commodity Index Tracking (DBC)

We consider monthly performance statistics, annual performance statistics, and full-sample compound annual growth rate (CAGR) and maximum drawdown (MaxDD). Annual Sharpe ratio uses average monthly yield on 3-month U.S. Treasury bills (T-bills) as the risk-free rate. The DBC series in combination with the SMA10 rule are limiting with respect to sample start date and the first return calculations. Using daily and monthly dividend-adjusted closing prices for the five asset class proxies and T-bill yield as return on cash during February 2006 through March 2020, we find that:

Keep Reading

Shorting VXX with Crash Protection

Does shorting the iPath S&P 500 VIX Short-Term Futures ETN (VXX) with crash protection (attempting to capture the equity volatility risk premium safely) work? To investigate, we apply crash protection rules to three VXX shorting scenarios:

  1. Let It Ride – shorting an initial amount of VXX and letting this position ride indefinitely.
  2. Fixed Reset – shorting a fixed amount of VXX and continually resetting this fixed position (so the short position does not become very small or very large).
  3. Gain/Loss Adjusted – shorting an initial amount of VXX and adjusting the size of the short position according to periodic gains/losses.

We consider two simple monthly crash protection rules based on the assumption that volatility changes are somewhat persistent, as follows:

  • Prior Month Positive Rule – short VXX (go to cash) when the prior-month short VXX return is positive (negative).
  • Prior Week Positive Rule – short VXX (go to cash) when the prior-week short VXX return is positive (negative).

For tractability, we ignore trading frictions, costs of shorting and return on retained cash from shorting gains. Using monthly closes for the S&P 500 Volatility Index (VIX) and monthly and weekly reverse split-adjusted closing prices for VXX from February 2009 through March 2020, we find that: Keep Reading

The Low-down on Low-risk Investing

Low-risk investment strategies buy or overweight low-risk assets and sell or underweight high-risk assets. Growth in low-risk investing is stimulating much pro and con debate in the financial community. Which assertions are valid, and which are not? In their February 2020 paper entitled “Fact and Fiction about Low-Risk Investing”, Ron Alquist, Andrea Frazzini, Antti Ilmanen and Lasse Pedersen identify five facts and five fictions about low-risk investing. They employ long-short U.S. stock portfolio strategies to illustrate relative performance of low-risk versus high-risk assets. They consider six statistical and four fundamental risk metrics, emphasizing differences between dollar-neutral and market-neutral strategy designs. Focusing on a few prominent low-risk metrics, they compare performances of low-risk strategies to those based on conventional size, value, profitability, investment and momentum factors. Using daily returns for U.S. stocks since January 1931 and firm fundamental data since January 1957, all through August 2019, they find that:

Keep Reading

Login
Daily Email Updates
Filter Research
  • Research Categories (select one or more)