Objective research to aid investing decisions

Value Investing Strategy (Strategy Overview)

Allocations for August 2020 (Final)

Momentum Investing Strategy (Strategy Overview)

Allocations for August 2020 (Final)
1st ETF 2nd ETF 3rd ETF

Volatility Effects

Reward goes with risk, and volatility represents risk. Therefore, volatility means reward; investors/traders get paid for riding roller coasters. Right? These blog entries relate to volatility effects.

Evolution of Quantitative Stock Investing

Quantitative investing involves disciplined rule-based approaches to help investors structure optimal portfolios that balance return and risk. How has such investing evolved? In their June 2018 paper entitled “The Current State of Quantitative Equity Investing”, Ying Becker and Marc Reinganum summarize key developments in the history of quantitative equity investing. Based on the body of research, they conclude that: Keep Reading

Downside Risk Premiums

Does focusing on downside risk (volatility or beta) consistently produce more accurate forecasts of asset returns? In their July 2018 paper entitled “Tail Risk in the Cross Section of Alternative Risk Premium Strategies”, Bernd Scherer and Nick Baltas investigate how well downside risk explains cross-sectional returns of 260 risk factor strategies spanning asset classes and investment styles from six global investment banks. Their main model is a two-pass regression that distinguishes between conventional market beta and market downside beta. For corroboration, they consider four other indicators of downside risk (return skewness, correlation of tail returns with equity market returns, TED spread and economic policy uncertainty as measured by relative VIX level). Using weekly data risk factor returns and downside risk indicators during February 2008 through January 2018, they find that: Keep Reading

Betting Against Beta, Plus Market Momentum

betting against beta (BAB) portfolio is long low-beta assets and short high-beta assets, with each side leveraged to a beta of one. Do strong past stock market returns (when investors tend to overweight high-beta stocks) predict an increase in BAB returns? In his June 2018 paper entitled “Time-Varying Leverage Demand and Predictability of Betting-Against-Beta”, Esben Hedegaard tests the prediction that BAB performs better in times and in countries after high past stock market returns in three ways: (1) regression of BAB returns versus past market returns; (2) sorts of BAB returns into fifths (quintiles) based on past market returns; and, (3) a timing strategy that is long BAB half the time and short BAB half the time based on detrended inception-to-date past market returns, scaled to 10% annualized volatility for comparability. Using daily and monthly data, including monthly BAB returns, for U.S. common stocks and the U.S. stock market since 1931 and for 23 other countries from as early as 1988, all through January 2018, he finds that: Keep Reading

Benefits of Volatility Targeting Across Asset Classes

Does volatility targeting improve Sharpe ratios and provide crash protection across asset classes? In their May 2018 paper entitled “Working Your Tail Off: The Impact of Volatility Targeting”, Campbell Harvey, Edward Hoyle, Russell Korgaonkar, Sandy Rattray, Matthew Sargaison, and Otto Van Hemert examine return and risk effects of long-only volatility targeting, which scales asset and/or portfolio exposure higher (lower) when its recent volatility is low (high). They consider over 60 assets spanning stocks, bonds, credit, commodities and currencies and two multi-asset portfolios (60-40 stocks-bonds and 25-25-25-25 stocks-bonds-credit-commodities). They focus on excess returns (relative to U.S. Treasury bill yield). They forecast volatility using realized daily volatility with exponentially decaying weights of varying half-lives to assess sensitivity to the recency of inputs. For most analyses, they employ daily return data to forecast volatility. For S&P 500 Index and 10-year U.S. Treasury note (T-note) futures, they also test high-frequency (5-minute) returns transformed to daily returns. They scale asset exposure inversely to forecasted volatility known 24 hours in advance, applying a retroactively determined constant that generates 10% annualized actual volatility to facilitate comparison across assets and sample periods. Using daily returns for U.S. stocks and industries since 1927, for U.S. bonds (estimated from yields) since 1962, for a credit index and an array of futures/forwards since 1988, and high-frequency returns for S&P 500 Index and 10-year U.S. Treasury note futures since 1988, all through 2017, they find that:

Keep Reading

Revisiting VIX as Stock Return Predictor

Does implied stock market volatility (IV) predict stock market returns? In their March 2018 paper entitled “Implied Volatility Measures As Indicators of Future Market Returns”, Roberto Bandelli and Wenye Wang analyze the relationship between S&P 500 Index IV and future S&P 500 Index returns. They consider volatilities implied either by S&P 500 Index options (VIX) or by 30-day at-the-money S&P 500 Index straddles. Specifically, they each day:

  1. Rank current S&P 500 Index IV according to ranked tenth (decile) of its daily distribution over the past two years. If current IV is higher than any value of IV over the past two years, its rank is 11.
  2. Calculate S&P 500 Index returns over the next one, five and 20 trading days.
  3. Relate these returns to IV rank.

They calculate statistical significance based on the difference between the average IV-ranked log returns and log returns over all intervals of the same length. Using daily data for the selected variables during December 1991 through November 2017, they find that: Keep Reading

Simple Volatility-Payout-Momentum Stock Strategy

Is there an easy way for investors to capture jointly the most reliable stock return factor premiums? In their March 2018 paper entitled “The Conservative Formula: Quantitative Investing Made Easy”, Pim van Vliet and David Blitz propose a stock selection strategy based on low return volatility, high net payout yield and strong price momentum. Specifically, at the end of each quarter they:

  1. Segment the then-current 1,000 largest stocks into 500 with the lowest and 500 with the highest 36-month return volatilities.
  2. Within each segment, rank stocks based on total net payout yield (NPY), calculated as dividend yield minus change in shares outstanding divided by its 24-month moving average.
  3. Within each segment, rank stocks based on return from 12 months ago to one month ago (with the skip-month intended to avoid return reversals).
  4. Within the low-volatility segment, average the momentum and NPY ranks for each stock and equally weight the top 100 to reform the Conservative Formula portfolio.
  5. Within the high-volatility segment, average the momentum and NPY ranks for each stock and equally weight the bottom 100 to reform the Speculative Formula portfolio.

Limiting the stock universe to the top 1,000 based on market capitalization suppresses liquidity risk. Limiting screening parameters to three intensely studied factors that require no accounting data mitigates data snooping and data availability risks. They focus on the 1,000 largest U.S. stocks to test a long sample, but also consider the next 1,000 U.S. stocks (mid-caps) and the 1,000 largest stocks from each of Europe, Japan and emerging markets. They further examine: (1) sensitivity to economic conditions doe the long U.S. sample; and, (2) impact of trading frictions in the range 0.1%-0.3% for developed markets and 0.2%-0.6% for emerging markets. Using quarterly prices, dividends and shares outstanding for the contemporaneously largest 1,000 U.S. stocks since 1926, European and Japanese stocks since 1986 and emerging markets stocks since 1991, all through 2016, they find that:

Keep Reading

Monthly Rebalanced Shorting of Leveraged ETF Pairs

Is shorting pairs of leveraged exchange-traded funds (ETF) reliably profitable? In their December 2017 paper entitled “Shorting Leveraged ETF Pairs”, Christopher Hessel, Jouahn Nam, Jun Wang, Xing Cunyu and Ge Zhang examine monthly returns from shorting a pair of leveraged and inverse leveraged ETFs for the same index. They first investigate what circumstances make this strategy profitable. They then test the strategy on each of the triple/inverse triple (3X/-3X) pairs associated with the following six base ETFs: Financial Select Sector SPDR (XLF: FAS/FAZ), Powershares QQQ (QQQ: TQQQ/SQQQ), iShares Russell 2000 Index (IWM: TNA/TZA), SPDR S&P 500 (SPY: UPRO/SPXU), VanEck Vectors Junior Gold Miners ETF (GDXJ: JNUG/JDST) and Energy Select Sector SPDR (XLE: ERX/ERY). Their analysis assumes rebalancing pair short positions to equal value at the end of each month and holding them to the end of the next month. Using monthly data for the selected leveraged ETFs from the end of 2007 (except the end of November 2009 for the leveraged versions of GDXJ) through the end of December 2016, they find that: Keep Reading

Managing Volatility to Suppress U.S. Stock Market Tail Risk

Do strategies that seek to exploit return volatility persistence by adjusting stock market exposure inversely with recent market volatility relative to some target (including exposures greater than 100%) produce obvious benefits for investors? In their November 2017 paper entitled “Tail Risk Mitigation with Managed Volatility Strategies”, Anna Dreyer and Stefan Hubrich examine usefulness of managing volatility in this way as applied to the S&P 500 Index over a long sample period and across a range of performance measurements. They use daily index returns in excess of the return on cash and rebalance stock index-cash test portfolios daily. Their target volatility is variable, set as the inception-to-date realized daily excess return volatility. They assess robustness across different sample subperiods, past volatility measurement intervals and portfolio holding intervals. They measure portfolio performance conventionally (Sharpe ratio), via effects on portfolio return distribution skewness and kurtosis (as an indicator of tail risk) and with investor utility metrics. Using daily excess returns for the S&P 500 Index during July 1926 through November 2016, they find that:

Keep Reading

Categorization of Risk Premiums

What is the best way to think about reliabilities and risks of various anomaly premiums commonly that investors believe to be available for exploitation? In their December 2017 paper entitled “A Framework for Risk Premia Investing”, Kari Vatanen and Antti Suhonen present a framework for categorizing widely accepted anomaly premiums to facilitate construction of balanced investment strategies. They first categorize each premium as fundamental, behavioral or structural based on its robustness as indicated by clarity, economic rationale and capacity. They then designate each premium in each category as either defensive or offensive depending on whether it is feasible as long-only or requires short-selling and leverage, and on its return skewness and tail risk. Based on expected robustness and riskiness of selected premiums as described in the body of research, they conclude that: Keep Reading

Volatility Scaling for Momentum Strategies?

What is the best way to implement futures momentum and manage its risk? In their November 2017 paper entitled “Risk Adjusted Momentum Strategies: A Comparison between Constant and Dynamic Volatility Scaling Approaches”, Minyou Fan, Youwei Li and Jiadong Liu compare performances of five futures momentum strategies and two benchmarks:

  1. Cross-sectional, or relative, momentum (XSMOM) – each month long (short) the equally weighted tenth of futures contract series with the highest (lowest) returns over the past six months.
  2. XSMOM with constant volatility scaling (CVS) – each month scales the XSMOM portfolio by the ratio of a 12% target volatility to annualized realized standard deviation of daily XSMOM portfolio returns over the past six months.
  3. XSMOM with dynamic volatility scaling (DVS) – each month scales the XSMOM portfolio by the the ratio of next-month expected market return (a function of realized portfolio volatility and whether MSCI return over the last 24 months is positive or negative) to realized variance of XSMOM portfolio daily returns over the past six months.
  4. Time-series, or intrinsic, momentum (TSMOM) – each month long (short) the equally weighted futures contract series with positive (negative) returns over the past six months.
  5. TSMOM with time-varying volatility scaling (TSMOM Scaled) – each month scales the TSMOM portfolio by the ratio of 22.6% (the volatility of an equally weighted portfolio of all future series) to annualized exponentially weighted variance of TSMOM returns over the past six months.
  6. Equally weighted, monthly rebalanced portfolio of all futures contract series (Buy-and-Hold).
  7. Buy-and-Hold with time-varying volatility scaling (Buy-and-Hold Scaled) – each month scales the Buy-and-Hold portfolio as for TSMOM Scaled.

They test these strategies on a multi-class universe of 55 global liquid futures contract series, starting when at least 45 series are available in November 1991. They focus on average annualized gross return, annualized volatility, annualized gross Sharpe ratio, cumulative return and maximum (peak-to-trough) drawdown (MaxDD) as comparison metrics. Using monthly prices for the 55 futures contract series (24 commodities, 13 government bonds, 9 currencies and 9 equity indexes) during June 1986 through May 2017, they find that:

Keep Reading

Daily Email Updates
Filter Research
  • Research Categories (select one or more)