# Volatility Effects

Reward goes with risk, and volatility represents risk. Therefore, volatility means reward; investors/traders get paid for riding roller coasters. Right? These blog entries relate to volatility effects.

**December 21, 2017** - Equity Premium, Volatility Effects

What is the smartest way (having the lowest prediction errors) to estimate market beta across stocks for the purpose of portfolio construction? In their November 2017 paper entitled “How to Estimate Beta?”, Fabian Hollstein, Marcel Prokopczuk and Chardin Simen test effects of different return sampling frequencies, forecast adjustments and model combinations on market beta prediction accuracy across the universe of U.S. stocks. Their primary goal is to identify optimal choices. They focus on a beta prediction horizon of six months. They consider past beta estimation (lookback) windows of 1, 3, 6, 12, 24, 36 and 60 months for daily data, 12, 36 and 60 months for monthly data and 120 months for quarterly data. They measure beta prediction accuracy based on average root mean squared error (RMSE) across stocks. Using returns for a broad sample of U.S. stocks during January 1963 through December 2015, *they find that:* Keep Reading

**December 7, 2017** - Volatility Effects

Is volatility dangerously oversold? In their November 2017 paper entitled “Everybody’s Doing it: Short Volatility Strategies and Shadow Financial Insurers”, Vineer Bhansali and Lawrence Harris survey strategies that directly or indirectly short volatility, including:

- Relevant strategies (selling options, buying and selling products linked to volatility indexes, risk parity, risk premium harvesting and volatility targeting).
- Types of investors that use them.
- Commonalities among them.
- Implications of commonalities (correlated unwinding).

Based on the properties of these strategies, *they conclude that:* Keep Reading

**December 6, 2017** - Volatility Effects

“Identifying VXX/XIV Tendencies” finds that the Volatility Risk Premium (VRP), estimated as the difference between the current level of the S&P 500 implied volatility index (VIX) and the annualized standard deviation of S&P 500 Index daily returns over the previous 21 trading days (multiplying by the square root of 250 to annualize), may be a useful predictor of iPath S&P 500 VIX Short-term Futures ETN (VXX) and VelocityShares Daily Inverse VIX Short-term ETN (XIV) returns. Is there a way to exploit this predictive power? To investigate, we compare performance data for:

- XIV B&H – buying and holding XIV.
- XIV-Cash – holding XIV (cash) when prior-day roll when VRP is relatively high (low).
- XIV-VXX – holding XIV (VXX) when prior-day VRP is relatively high (low).

We focus on compound annual growth rate (CAGR) and maximum drawdown (MaxDD) as key performance statistics. Using daily closes for XIV, VXX, VIX and the S&P 500 Index from XIV inception (end of November 2010) through mid-November 2017, *we find that:* Keep Reading

**December 5, 2017** - Commodity Futures, Volatility Effects

“Identifying VXX/XIV Tendencies” finds that S&P 500 implied volatility index (VIX) futures roll return, as measured by the percentage difference in settlement price between the nearest and next nearest VIX futures, may be a useful predictor of iPath S&P 500 VIX Short-term Futures ETN (VXX) and VelocityShares Daily Inverse VIX Short-term ETN (XIV) returns. Is there a way to exploit this predictive power? To investigate, we compare performances of:

- XIV B&H – buying and holding XIV.
- XIV-Cash – holding XIV (cash) when prior-day roll return is non-positive (positive).
- XIV-VXX – holding XIV (VXX) when prior-day roll return is non-positive (positive).

We focus on compound annual growth rate (CAGR) and maximum drawdown (MaxDD) as key performance statistics. Using daily closing prices for XIV and VXX and daily settlement prices for VIX futures from XIV inception (end of November 2010) through mid-November 2017, *we find that:*

Keep Reading

**December 4, 2017** - Commodity Futures, Volatility Effects

A subscriber inquired about strategies for trading exchange-traded notes (ETN) constructed from near-term S&P 500 Volatility Index (VIX) futures: iPath S&P 500 VIX Short-Term Futures ETN (VXX) and VelocityShares Daily Inverse VIX Short-Term (XIV), available since 1/30/09 and 11/30/10, respectively. The managers of these securities buy and sell VIX futures daily to maintain a constant maturity of one month (long for VXX and short for XIV), continually rolling partial positions from the nearest term contract to the next nearest. We consider five potential predictors of the price behavior of these ETNs:

- Level of VIX, in case a high (low) level indicates a future decrease (increase) in VIX that might affect VXX and XIV.
- Change in VIX (VIX “return”), in case there is some predictable reversion or momentum for VIX that might affect VXX and XIV.
- Implied volatility of VIX (VVIX), in case uncertainty in the expected level of VIX might affect VXX and XIV.
- Term structure of VIX futures (roll return) underlying VXX and XIV, as measured by the percentage difference in settlement price between the nearest and next nearest VIX futures, indicating a price headwind or tailwind for a fund manager continually rolling from one to the other. VIX roll return is usually negative (contango), but occasionally positive (backwardation).
- Volatility Risk Premium (VRP), estimated as the difference between VIX and the annualized standard deviation of daily S&P 500 Index returns over the past 21 trading days (multiplying by the square root of 250 to annualize), in case this difference between expectations and recent experience indicates the direction of future change in VIX.

We measure predictive power of each in two ways:

- Correlations between daily VXX and XIV returns over the next 21 trading days to daily values of each indicator.
- Average next-day XIV returns by ranked tenth (decile) of daily values of each indicator.

Using daily levels of VIX and VVIX, settlement prices for VIX futures contracts, levels of the S&P 500 Index and split-adjusted prices for VXX and XIV from inceptions of the ETNs through mid-November 2017, *we find that:* Keep Reading

**December 1, 2017** - Equity Options, Strategic Allocation, Volatility Effects

Can investors refine portfolio rebalancing while capturing a volatility risk premium (VRP) by systematically shorting options matched to target allocations of the underlying asset? In their October 2017 paper entitled “An Alternative Option to Portfolio Rebalancing”, Roni Israelov and Harsha Tummala explore multi-asset class portfolio rebalancing via an option selling overlay. The overlay sells out-of-the-money options such that, if stocks rise (fall), counterparties exercise call (put) options and the portfolio must sell (buy) shares. They intend their approach to counter short-term momentum exposure between rebalancings (when the portfolio is overweight winners and underweight losers) with short-term reversal exposure inherent in short options. For testing, they assume: (1) a simple 60%-40% stocks-bonds portfolio; (2) bond returns are small compared to stock returns (so only the stock allocation requires rebalancing); and, (3) option settlement via share transfer, as for SPDR S&P 500 (SPY) as the stock/option positions. They each month sell nearest out-of-the-money S&P 500 Index call and put options across multiple economically priced strikes and update the overlay intramonth if new economically priced strikes become available. Once sold, they hold the options to expiration. Using daily S&P 500 Total Return Index returns, Barclays US Aggregate Bond Index returns and closing bid/ask quotes for S&P 500 Index options equity options (with returns calculated in excess of the risk-free rate) during 1996 through 2015, *they find that:*

Keep Reading

**November 15, 2017** - Strategic Allocation, Technical Trading, Volatility Effects

A subscriber requested comparison of four variations of an “Ivy 5” asset class allocation strategy, as follows:

- Ivy 5 EW: Assign equal weight (EW), meaning 20%, to each of the five positions and rebalance annually.
- Ivy 5 EW + SMA10: Same as Ivy 5 EW, but take to cash any position for which the asset is below its 10-month simple moving average (SMA10).
- Ivy 5 Volatility Cap: Allocate to each position a percentage up to 20% such that the position has an expected annualized volatility of no more than 10% based on daily volatility over the past month, recalculated monthly. If under 20%, allocate the balance of the position to cash.
- Ivy 5 Volatility Cap + SMA10: Same as Ivy 5 Volatility Cap, but take completely to cash any position for which the asset is below its SMA10.

To perform the tests, we employ the following five asset class proxies:

iShares 7-10 Year Treasury Bond (IEF)

SPDR S&P 500 (SPY)

Vanguard REIT ETF (VNQ)

iShares MSCI EAFE Index (EFA)

PowerShares DB Commodity Index Tracking (DBC)

We consider monthly performance statistics, annual performance statistics, and full-sample compound annual growth rate (CAGR) and maximum drawdown (MaxDD). The DBC series in combination with the SMA10 rule are limiting with respect to sample start date and the first return calculations. Using daily and monthly dividend-adjusted closing prices for the five asset class proxies and the yield on 13-week U.S. Treasury bills (T-bills) as a proxy for return on cash during February 2006 through October 2017 (141 months), *we find that:* Keep Reading

**October 26, 2017** - Equity Premium, Volatility Effects

Does relative demand for call and put options on individual stocks, as measured by average difference in implied volatilities of at-the-money calls and puts (aggregate implied volatility spread), predict stock market returns? In their September 2017 paper entitled “Aggregate Implied Volatility Spread and Stock Market Returns”, Bing Han and Gang Li test aggregate implied volatility spread as a U.S. stock market return predictor. They focus on monthly measurements, but test the daily series in robustness test. They calculate monthly implied volatility spread for each stock with at least 12 daily at-the-money call and put option prices during the month as an average over the last five trading days. They then eliminate outliers by excluding the top and bottom 0.1% of all stock implied volatility spreads before averaging across stocks to calculate aggregate implied volatility spread. They compare the predictive power of aggregate implied volatility spread to those of 22 other predictors from prior research. Using daily at-the-money call and put implied volatilities for U.S. stocks, data for other U.S. stock market predictors and U.S. stock market returns during January 1996 through December 2015, *they find that:*

Keep Reading

**October 24, 2017** - Equity Premium, Momentum Investing, Value Premium, Volatility Effects

Is it better to build equity multifactor portfolios by holding distinct single-factor sub-portfolios, or by picking only stocks that satisfy multiple factor criteria? In their September 2017 paper entitled “Smart Beta Multi-Factor Construction Methodology: Mixing vs. Integrating”, Tzee-man Chow, Feifei Li and Yoseop Shim compare long-only multifactor portfolios constructed in two ways:

- Integrated – each quarter, pick the 20% of stocks with the highest average standardized factor scores and weight by market capitalization.
- Mixed – each quarter, hold an equal-weighted combination of single-factor portfolios, each comprised of the capitalization-weighted 20% of stocks with the highest expected returns for that factor.

They consider five factors: value (book-to-market ratio), momentum (return from 12 months ago to one month ago), operating profitability, investment (asset growth) and low-beta. They reform factor portfolios annually for all except momentum and low-beta, which they reform quarterly. Using firm data required for factor calculations and associated stock returns for a broad sample of U.S. stocks during June 1968 through December 2016, *they find that:* Keep Reading

**October 17, 2017** - Equity Premium, Momentum Investing, Size Effect, Value Premium, Volatility Effects

How efficiently do mutual funds capture factor premiums? In their April 2017 paper entitled “The Incredible Shrinking Factor Return”, Robert Arnott, Vitali Kalesnik and Lillian Wu investigate whether factor tilts employed by mutual fund managers deliver the alpha found in empirical research. They focus on four factors most widely used by mutual fund managers: market, size, value and momentum. They note that ideal long-short portfolios used to compute factor returns ignore costs associated with real-world implementation: trading costs and commissions, missed trades, illiquidity, management fees, borrowing costs for the short side and inability to short some stocks. Portfolio returns also ignore bias associated with data snooping in factor discovery and market adaptation to published research. They focus on U.S. long-only equity mutual funds, but also consider similar international funds. They apply a two-stage regression first to identify fund factor exposures and then to measure performance shortfalls per unit of factor exposure. Using data for 5,323 U.S. and 2,364 international live and dead long-only equity mutual funds during January 1990 through December 2016, *they find that:*

Keep Reading