Objective research to aid investing decisions

Value Investing Strategy (Strategy Overview)

Allocations for July 2024 (Final)
Cash TLT LQD SPY

Momentum Investing Strategy (Strategy Overview)

Allocations for July 2024 (Final)
1st ETF 2nd ETF 3rd ETF

Volatility Effects

Reward goes with risk, and volatility represents risk. Therefore, volatility means reward; investors/traders get paid for riding roller coasters. Right? These blog entries relate to volatility effects.

Volatility Scaling for Momentum Strategies?

What is the best way to implement futures momentum and manage its risk? In their November 2017 paper entitled “Risk Adjusted Momentum Strategies: A Comparison between Constant and Dynamic Volatility Scaling Approaches”, Minyou Fan, Youwei Li and Jiadong Liu compare performances of five futures momentum strategies and two benchmarks:

  1. Cross-sectional, or relative, momentum (XSMOM) – each month long (short) the equally weighted tenth of futures contract series with the highest (lowest) returns over the past six months.
  2. XSMOM with constant volatility scaling (CVS) – each month scales the XSMOM portfolio by the ratio of a 12% target volatility to annualized realized standard deviation of daily XSMOM portfolio returns over the past six months.
  3. XSMOM with dynamic volatility scaling (DVS) – each month scales the XSMOM portfolio by the the ratio of next-month expected market return (a function of realized portfolio volatility and whether MSCI return over the last 24 months is positive or negative) to realized variance of XSMOM portfolio daily returns over the past six months.
  4. Time-series, or intrinsic, momentum (TSMOM) – each month long (short) the equally weighted futures contract series with positive (negative) returns over the past six months.
  5. TSMOM with time-varying volatility scaling (TSMOM Scaled) – each month scales the TSMOM portfolio by the ratio of 22.6% (the volatility of an equally weighted portfolio of all future series) to annualized exponentially weighted variance of TSMOM returns over the past six months.
  6. Equally weighted, monthly rebalanced portfolio of all futures contract series (Buy-and-Hold).
  7. Buy-and-Hold with time-varying volatility scaling (Buy-and-Hold Scaled) – each month scales the Buy-and-Hold portfolio as for TSMOM Scaled.

They test these strategies on a multi-class universe of 55 global liquid futures contract series, starting when at least 45 series are available in November 1991. They focus on average annualized gross return, annualized volatility, annualized gross Sharpe ratio, cumulative return and maximum (peak-to-trough) drawdown (MaxDD) as comparison metrics. Using monthly prices for the 55 futures contract series (24 commodities, 13 government bonds, 9 currencies and 9 equity indexes) during June 1986 through May 2017, they find that:

Keep Reading

Smartest Beta?

What is the smartest way (having the lowest prediction errors) to estimate market beta across stocks for the purpose of portfolio construction? In their November 2017 paper entitled “How to Estimate Beta?”, Fabian Hollstein, Marcel Prokopczuk and Chardin Simen test effects of different return sampling frequencies, forecast adjustments and model combinations on market beta prediction accuracy across the universe of U.S. stocks. Their primary goal is to identify optimal choices. They focus on a beta prediction horizon of six months. They consider past beta estimation (lookback) windows of 1, 3, 6, 12, 24, 36 and 60 months for daily data, 12, 36 and 60 months for monthly data and 120 months for quarterly data. They measure beta prediction accuracy based on average root mean squared error (RMSE) across stocks. Using returns for a broad sample of U.S. stocks during January 1963 through December 2015, they find that: Keep Reading

Correlated Unwind of Short Volatility?

Is volatility dangerously oversold? In their November 2017 paper entitled “Everybody’s Doing it: Short Volatility Strategies and Shadow Financial Insurers”, Vineer Bhansali and Lawrence Harris survey strategies that directly or indirectly short volatility, including:

  • Relevant strategies (selling options, buying and selling products linked to volatility indexes, risk parity, risk premium harvesting and volatility targeting).
  • Types of investors that use them.
  • Commonalities among them.
  • Implications of commonalities (correlated unwinding).

Based on the properties of these strategies, they conclude that: Keep Reading

Shorting Equity Options to Automate Portfolio Rebalancing

Can investors refine portfolio rebalancing while capturing a volatility risk premium (VRP) by systematically shorting options matched to target allocations of the underlying asset? In their October 2017 paper entitled “An Alternative Option to Portfolio Rebalancing”, Roni Israelov and Harsha Tummala explore multi-asset class portfolio rebalancing via an option selling overlay. The overlay sells out-of-the-money options such that, if stocks rise (fall), counterparties exercise call (put) options and the portfolio must sell (buy) shares. They intend their approach to counter short-term momentum exposure between rebalancings (when the portfolio is overweight winners and underweight losers) with short-term reversal exposure inherent in short options. For testing, they assume: (1) a simple 60%-40% stocks-bonds portfolio; (2) bond returns are small compared to stock returns (so only the stock allocation requires rebalancing); and, (3) option settlement via share transfer, as for SPDR S&P 500 (SPY) as the stock/option positions. They each month sell nearest out-of-the-money S&P 500 Index  call and put options across multiple economically priced strikes and update the overlay intramonth if new economically priced strikes become available. Once sold, they hold the options to expiration. Using daily S&P 500 Total Return Index returns, Barclays US Aggregate Bond Index returns and closing bid/ask quotes for S&P 500 Index options equity options (with returns calculated in excess of the risk-free rate) during 1996 through 2015, they find that:

Keep Reading

Average Call-Put Implied Volatility Spread and Future Stock Market Return

Does relative demand for call and put options on individual stocks, as measured by average difference in implied volatilities of at-the-money calls and puts (aggregate implied volatility spread), predict stock market returns? In their September 2017 paper entitled “Aggregate Implied Volatility Spread and Stock Market Returns”, Bing Han and Gang Li test aggregate implied volatility spread as a U.S. stock market return predictor. They focus on monthly measurements, but test the daily series in robustness test. They calculate monthly implied volatility spread for each stock with at least 12 daily at-the-money call and put option prices during the month as an average over the last five trading days. They then eliminate outliers by excluding the top and bottom 0.1% of all stock implied volatility spreads before averaging across stocks to calculate aggregate implied volatility spread. They compare the predictive power of aggregate implied volatility spread to those of 22 other predictors from prior research. Using daily at-the-money call and put implied volatilities for U.S. stocks, data for other U.S. stock market predictors and U.S. stock market returns during January 1996 through December 2015, they find that:

Keep Reading

How Best to Diversify Smart Betas

Is it better to build equity multifactor portfolios by holding distinct single-factor sub-portfolios, or by picking only stocks that satisfy multiple factor criteria? In their September 2017 paper entitled “Smart Beta Multi-Factor Construction Methodology: Mixing vs. Integrating”, Tzee-man Chow, Feifei Li and Yoseop Shim compare long-only multifactor portfolios constructed in two ways:

  1. Integrated – each quarter, pick the 20% of stocks with the highest average standardized factor scores and weight by market capitalization.
  2. Mixed – each quarter, hold an equal-weighted combination of single-factor portfolios, each comprised of the capitalization-weighted 20% of stocks with the highest expected returns for that factor. 

They consider five factors: value (book-to-market ratio), momentum (return from 12 months ago to one month ago), operating profitability, investment (asset growth) and low-beta. They reform factor portfolios annually for all except momentum and low-beta, which they reform quarterly. Using firm data required for factor calculations and associated stock returns for a broad sample of U.S. stocks during June 1968 through December 2016, they find that: Keep Reading

Factor Overoptimism?

How efficiently do mutual funds capture factor premiums? In their April 2017 paper entitled “The Incredible Shrinking Factor Return”, Robert Arnott, Vitali Kalesnik and Lillian Wu investigate whether factor tilts employed by mutual fund managers deliver the alpha found in empirical research. They focus on four factors most widely used by mutual fund managers: market, size, value and momentum. They note that ideal long-short portfolios used to compute factor returns ignore costs associated with real-world implementation: trading costs and commissions, missed trades, illiquidity, management fees, borrowing costs for the short side and inability to short some stocks. Portfolio returns also ignore bias associated with data snooping in factor discovery and market adaptation to published research. They focus on U.S. long-only equity mutual funds, but also consider similar international funds. They apply a two-stage regression first to identify fund factor exposures and then to measure performance shortfalls per unit of factor exposure. Using data for 5,323 U.S. and 2,364 international live and dead long-only equity mutual funds during January 1990 through December 2016, they find that:

Keep Reading

Predicted Factor/Smart Beta Alphas

Which equity factors have high and low expected returns? In their February 2017 paper entitled “Forecasting Factor and Smart Beta Returns (Hint: History Is Worse than Useless)”, Robert Arnott, Noah Beck and Vitali Kalesnik evaluate attractiveness of eight widely used stock factors. They measure alpha for each factor conventionally via a portfolio that is long (short) stocks with factor values having high (low) expected returns, reformed systematically. They compare factor alpha forecasting abilities of six models:

  1. Factor return for the last five years.
  2. Past return over the very long term (multiple decades), a conventionally used assumption.
  3. Simple relative valuation (average valuation of long-side stocks divided by average valuation of short-side stocks), comparing current level to its past average.
  4. Relative valuation with shrunk parameters to moderate forecasts by dampening overfitting to past data.
  5. Relative valuation with shrunk parameters and variance reduction, further moderating Model 4 by halving its outputs.
  6. Relative valuation with look-ahead full-sample calibration to assess limits of predictability. 

They employ simple benchmark forecasts of zero factor alphas. Using 24 years of specified stock data (January 1967 – December 1990) for model calibrations, about 20 years of data (January 1991 – October 2011) to generate forecasts and the balance of data (through December 2016) to complete forecast accuracy measurements, they find that: Keep Reading

Factor/Smart Beta Investing Unsustainably Faddish?

Does transient factor popularity drive factor/smart beta portfolio performance by pushing valuations of associated stocks up and down? In their February 2016 paper entitled “How Can ‘Smart Beta’ Go Horribly Wrong?”, Robert Arnott, Noah Beck, Vitali Kalesnik and John West examine degrees to which factor hedge portfolio and stock factor tilt (smart beta) backtests are attractive due to:

  1. Steady and clearly sustainable factor premiums; or,
  2. Changes in factor relative valuations, measured as average price-to-book value ratio of stocks with high expected returns (factor portfolio long side) divided by average price-to-book ratio of stocks with low expected returns (factor portfolio short side). This ratio tends to increase (decrease) as investor assets move into (out of) factor portfolios.

They consider six long-short factor hedge portfolios: value, momentum, market capitalization (size), illiquidity, low beta and gross profitability. They also consider six smart beta portfolios, which they (mostly) require to sever the relationship between stock price and portfolio weight and to have low turnover, substantial market breadth, liquidity, capacity, transparency, ease of testing and low fees: equal weight, fundamental index, risk efficient, maximum diversification, low volatility and quality. Using specified annual and monthly factor measurement data and returns for a broad sample of U.S. stocks during January 1967 through September 2015, they find that: Keep Reading

Factor Tilts of Broad Stock Indexes

Do broad (capitalization-weighted) stock market indexes exhibit factor tilts that may indicate concentrations in corresponding risks? In their August 2017 paper entitled “What’s in Your Benchmark? A Factor Analysis of Major Market Indexes”, Ananth Madhavan, Aleksander Sobczyk and Andrew Ang examine past and present long-only factor exposures of several popular market capitalization indexes. Their analysis involves (1) estimating the factor characteristics of each stock in a broad index; (2) aggregating the characteristics across all stocks in the index; and (3) matching aggregated characteristics to a mimicking portfolio of five indexes representing value, size, quality, momentum and low volatility styles, adjusted for estimated expense ratios. For broad U.S. stock indexes, the five long-only style indexes are:

  • Value – MSCI USA Enhanced Value Index.
  • Size –  MSCI USA Risk Weighted Index.
  • Quality – MSCI USA Sector Neutral Quality Index.
  • Momentum –  MSCI USA Momentum Index.
  • Low Volatility – MSCI USA Minimum Volatility Index.

For broad international indexes, they use corresponding long-only MSCI World style indexes. Using quarterly stock and index data from the end of March 2002 through the end of March 2017, they find that: Keep Reading

Login
Daily Email Updates
Filter Research
  • Research Categories (select one or more)