Objective research to aid investing decisions

Value Investing Strategy (Strategy Overview)

Allocations for May 2022 (Final)
Cash TLT LQD SPY

Momentum Investing Strategy (Strategy Overview)

Allocations for May 2022 (Final)
1st ETF 2nd ETF 3rd ETF

Commodity Futures

These entries address investing and trading in commodities and commodity futures as an alternative asset class to equities.

Economic Surprise Momentum

How should investors think about surprises in economic data? In their March 2022 paper entitled “Caught by Surprise: How Markets Respond to Macroeconomic News”, Guido Baltussen and Amar Soebhag devise and investigate a real-time aggregate measure of surprises in economic (not financial) variables around the world. Each measurement for each variable consists of release date/time, initial as-released value, associated consensus (median) forecast, number and standard deviation of individual forecasts and any revision to the previous as-released value across U.S., UK, the Eurozone and Japan markets from the Bloomberg Economic Calendar. They classify variables as either growth-related or inflation-related. They apply recursive principal component analysis to aggregate individual variable surprises separately into daily nowcasts of initial growth-related and inflation-related announcement surprises and associated revision surprises. They investigate the time series behaviors of these nowcasts and then examine their interactions with returns for four asset classes:

  1. Stocks via prices of front-month futures contracts rolled the day before expiration for S&P 500, FTSE 100, Nikkei 225 and Eurostoxx 50 indexes.
  2. Government bonds via prices of front-month futures contracts rolled the day before first notice on U.S., UK, Europe and Japan 10-year bonds.
  3. Credit via returns on 5-year credit default swaps for U.S. and Europe investment grade and high yield corporate bond indexes.
  4. Commodities via excess returns for the Bloomberg Commodity Index.

Specifically, they test an investment strategy that takes a position equal to the 1-day lagged value of the growth surprise nowcast or the inflation surprise nowcast on the last trading day of each month. They pool regions within an asset class by equally weighting regional markets. Using daily as-released data for 191 economic variables across global regions and the specified monthly asset class price inputs during March 1997 through December 2019, they find that: Keep Reading

Natural Gas Trades Around Major Winter Storms?

A subscriber asked whether it works to buy natural gas before big winter storms. To investigate, we look at the interactions between a sample of major winter storms in the U.S. northeast (NE) and contemporaneous prices of the futures-based United States Natural Gas Fund, LP (UNG). Using daily adjusted closes of UNG and dates of the selected major winter storms during April 2007 (UNG inception) through March 2022, we find that: Keep Reading

Overnight Effect Across Asset Classes?

Does the overnight return effect found pervasively among equity markets, as summarized in “Persistence of Overnight/Intraday Equity Market Return Patterns”, also hold for other asset classes? To investigate, we compare open-to-close (O-C) and close-to-open (C-O) average returns, standard deviations of returns and cumulative performances for the exchange-traded funds (ETF) used as asset class proxies in the Simple Asset Class ETF Momentum Strategy (SACEMS). Using daily dividend-adjusted opening and closing prices of these ETFs during mid-December 2007 (inception of the youngest ETF) through early March 2022, we find that: Keep Reading

Timing GLD Using Gold Futures Position Data

A subscriber asked whether traders should enter a position in gold, as proxied by SPDR Gold Shares (GLD), whenever Commercial gold futures traders are net long and Non-commercial gold future traders (Speculators) are net short. To investigate, we:

  • Obtain from the Commodity Futures Trading Commission weekly gold Commitments of Traders (CoT) legacy reports (futures only) as available. Terminology in the legacy reports matches that in the question posed.
  • For each week, calculate the net (long minus short) contract positions separately for Commercial traders and Speculators.
  • Identify the weeks when Commercial traders are net long and Speculators are net short. Because these two groups are largely trading counterparties, they are nearly always opposite in net positions (in other words, the specified setup is not much different from just requiring that Commercial traders be net long).
  • Examine future GLD returns for these weeks.

Using weekly CoT gold futures position data since January 1986 and matching weekly GLD prices since inception in late November 2004, both through late February 2022, we find that: Keep Reading

Recent Interactions of Asset Classes with Effective Federal Funds Rate

How do returns of different asset classes recently interact with the Effective Federal Funds Rate (EFFR)? We focus on monthly changes (simple differences) in EFFR  and look at lead-lag relationships between change in EFFR and returns for each of the following 10 exchange-traded fund (ETF) asset class proxies:

  • Equities:
    • SPDR S&P 500 (SPY)
    • iShares Russell 2000 Index (IWM)
    • iShares MSCI EAFE Index (EFA)
    • iShares MSCI Emerging Markets Index (EEM)
  • Bonds:
    • iShares Barclays 20+ Year Treasury Bond (TLT)
    • iShares iBoxx $ Investment Grade Corporate Bond (LQD)
    • iShares JPMorgan Emerging Markets Bond Fund (EMB)
  • Real assets:
    • Vanguard REIT ETF (VNQ)
    • SPDR Gold Shares (GLD)
    • Invesco DB Commodity Index Tracking (DBC)

Using monthly EFFR and monthly dividend-adjusted prices for the 10 specified ETFs during December 2007 (limited by EMB) through December 2021, we find that: Keep Reading

Recent Interactions of Asset Classes with Economic Policy Uncertainty

How do returns of different asset classes recently interact with uncertainty in government economic policy as quantified by the Economic Policy Uncertainty (EPU) Index? This index at the beginning of each month incorporates from the prior month:

  1. Coverage of policy-related economic uncertainty by prominent newspapers (50% weight).
  2. Number of temporary federal tax code provisions set to expire in future years (one sixth weight).
  3. Level of disagreement in one-year forecasts among participants in the Federal Reserve Bank of Philadelphia’s Survey of Professional Forecasters for both (a) the consumer price index (one sixth weight) and (b) purchasing of goods and services by federal, state and local governments (one sixth weight).

Because the historical EPU Index series includes substantial revisions to prior months, we focus on monthly percentage changes in EPU Index and look at lead-lag relationships between change in EPU Index and returns for each of the following 10 exchange-traded fund (ETF) asset class proxies:

  • Equities:
    • SPDR S&P 500 (SPY)
    • iShares Russell 2000 Index (IWM)
    • iShares MSCI EAFE Index (EFA)
    • iShares MSCI Emerging Markets Index (EEM)
  • Bonds:
    • iShares Barclays 20+ Year Treasury Bond (TLT)
    • iShares iBoxx $ Investment Grade Corporate Bond (LQD)
    • iShares JPMorgan Emerging Markets Bond Fund (EMB)
  • Real assets:
    • Vanguard REIT ETF (VNQ)
    • SPDR Gold Shares (GLD)
    • Invesco DB Commodity Index Tracking (DBC)

Using monthly levels of the EPU Index and monthly dividend-adjusted prices for the 10 specified ETFs during December 2007 (limited by EMB) through December 2021, we find that: Keep Reading

Recent Interactions of Asset Classes with Inflation (PPI)

How do returns of different asset classes recently interact with inflation as measured by monthly change in the not seasonally adjusted, all-commodities producer price index (PPI) from the U.S. Bureau of Labor Statistics? To investigate, we look at lead-lag relationships between change in PPI and returns for each of the following 10 exchange-traded fund (ETF) asset class proxies:

  • Equities:
    • SPDR S&P 500 (SPY)
    • iShares Russell 2000 Index (IWM)
    • iShares MSCI EAFE Index (EFA)
    • iShares MSCI Emerging Markets Index (EEM)
  • Bonds:
    • iShares Barclays 20+ Year Treasury Bond (TLT)
    • iShares iBoxx $ Investment Grade Corporate Bond (LQD)
    • iShares JPMorgan Emerging Markets Bond Fund (EMB)
  • Real assets:
    • Vanguard REIT ETF (VNQ)
    • SPDR Gold Shares (GLD)
    • Invesco DB Commodity Index Tracking (DBC)

Using monthly total PPI values and monthly dividend-adjusted prices for the 10 specified ETFs during December 2007 (limited by EMB) through December 2021, we find that: Keep Reading

Recent Interactions of Asset Classes with Inflation (CPI)

How do returns of different asset classes recently interact with inflation as measured by monthly change in the not seasonally adjusted, all-items consumer price index (CPI) from the U.S. Bureau of Labor Statistics? To investigate, we look at lead-lag relationships between change in CPI and returns for each of the following 10 exchange-traded fund (ETF) asset class proxies:

  • Equities:
    • SPDR S&P 500 (SPY)
    • iShares Russell 2000 Index (IWM)
    • iShares MSCI EAFE Index (EFA)
    • iShares MSCI Emerging Markets Index (EEM)
  • Bonds:
    • iShares Barclays 20+ Year Treasury Bond (TLT)
    • iShares iBoxx $ Investment Grade Corporate Bond (LQD)
    • iShares JPMorgan Emerging Markets Bond Fund (EMB)
  • Real assets:
    • Vanguard REIT ETF (VNQ)
    • SPDR Gold Shares (GLD)
    • Invesco DB Commodity Index Tracking (DBC)

Using monthly total CPI values and monthly dividend-adjusted prices for the 10 specified ETFs during December 2007 (limited by EMB) through December 2021, we find that: Keep Reading

Performance of Derivatives Traders

How well do derivatives traders perform, and why? In the July 2021 version of their paper entitled “Derivatives Leverage is a Double-Edged Sword”, Avanidhar Subrahmanyam, Ke Tang, Jingyuan Wang and Xuewei Yang study the performance of Chinese derivatives (futures) traders across 1,086 contracts on 51 underlying assets. They consider gross and net daily trader returns, turnover and degree of leverage implied by contracts held. They further investigate sources of profits/losses for these traders. To identify clearly skilled (unskilled) traders, they identify those in the top (bottom) 5% of Sharpe ratios who trade on at least 24 days during the first year of the sample period and isolate those with statistically extreme performance. They then analyze trading behaviors and results for these extreme performers the next two years. Using data from a major futures broker in China, including transaction histories, end-of-day holdings and account flows (injections and withdrawals) for 10,822 traders (315 institutional) during January 2014 through December 2016, they find that:

Keep Reading

Are Managed Futures ETFs Working?

Are managed futures, as implemented by exchange-traded funds (ETF), attractive? To investigate, we consider three managed futures ETFs, all currently available:

  1. WisdomTree Managed Futures Strategy (WTMF) – seeks positive total returns in rising or falling markets that are uncorrelated with broad market equity and fixed income returns via diversified combination of commodities, currencies and interest rates futures.
  2. First Trust Morningstar Managed Futures Strategy (FMF) – seeks positive returns that are uncorrelated to broad market equity and fixed income returns via a portfolio of exchange-listed futures.
  3. ProShares Managed Futures Strategy (FUT) – seeks to profit in rising and falling markets by long and short positions in futures across asset classes such as commodities, currencies and fixed income such that each contributes equally to portfolio risk.
  4. iM DBi Managed Futures Strategy (DBMF) – seeks long-term capital appreciation via long and short positions in futures across the asset classes such as equities, fixed income, currencies and commodities. Fund positions approximate the current asset allocation of a pool of the largest commodity trading advisor hedge funds.

We focus on average return, standard deviation of returns, reward/risk (average return divided by standard deviation), compound annual growth rate (CAGR), maximum drawdown (MaxDD) and correlations of returns with those of SPDR S&P 500 (SPY) and iShares Barclays 20+ Year Treasury Bond (TLT), all based on monthly data, as key performance statistics. We use Eurekahedge CTA/Managed Futures Hedge Fund Index (Eurekahedge) as a benchmark. Using monthly returns for the four managed futures funds as available through July 2021, and contemporaneous monthly returns for the benchmark index, SPY and TLT, we find that:

Keep Reading

Login
Daily Email Updates
Filter Research
  • Research Categories (select one or more)