Objective research to aid investing decisions

Value Investing Strategy (Strategy Overview)

Allocations for June 2021 (Final)
Cash TLT LQD SPY

Momentum Investing Strategy (Strategy Overview)

Allocations for June 2021 (Fiinal)
1st ETF 2nd ETF 3rd ETF

Commodity Futures

These entries address investing and trading in commodities and commodity futures as an alternative asset class to equities.

Commodity Futures Risk Premium Over the Long Run

What are long run returns for commodity futures? In their September 2019 paper entitled “The Commodity Futures Risk Premium: 1871-2018”, Geetesh Bhardwaj, Rajkumar Janardanan and Geert Rouwenhorst estimate the historical risk premium of commodity futures from a long and broad sample free of survivorship bias covering 230 contract series traded since 1871 mostly in the U.S. and the UK. They calculate the premium as average excess return for rolling front-month contracts in three ways: (1) simple equal weighting of all monthly observations; (2) equal-weighted separately calculated premiums for each contract series; and, (3) average excess return for an equal‐weighted index series. They explore the link between survival of a contract series and its risk premium. They also estimate returns to basis or momentum factor strategies that are each month long (short) the equal-weighted half of available commodities with the higher (lower) futures basis or prior-year spot return. Using monthly prices for 230 commodity futures traded on 28 exchanges during 1871 through 2018, they find that: Keep Reading

Stocks Plus Trend Following Managed Futures?

A subscriber asked about an annually rebalanced portfolio of 50% stocks and 50% trend following managed futures as recommended in a 2014 Greyserman and Kaminski book [Trend Following with Managed Futures: The Search for Crisis Alpha], suggesting Equinox Campbell Strategy I (EBSIX) as an accessible managed futures fund. To investigate, we consider not only EBSIX (inception March 2013) but also a longer trend following hedge fund index with monthly returns back to December 1999. This alternative “is an equally weighted index of 37 constituent funds…designed to provide a broad measure of the performance of underlying hedge fund managers who invest with a trend following strategy.” The correlation of monthly returns between this index and EBSIX during April 2013 through February 2019 is 0.84, indicating strong similarity. We use SPDR S&P 500 (SPY) as a proxy for stocks. Using annual returns for EBSIX during 2014-2018 and for the trend following hedge fund index and SPY during 2000-2018, we find that: Keep Reading

Commodity Futures Strategies Over the Very Long Run

Do momentum (nearest contract 12-month excess return), value (spot price change from one year ago to five years ago) and basis (12-month average ratio of nearest to next-nearest contract prices) commodity futures premiums hold up over the very long run? In their February 2019 paper entitled “Two Centuries of Commodity Futures Premia: Momentum, Value and Basis”, Christopher Geczy and Mikhail Samonov measure momentum, value and basis premiums with a 141-year sample of commodity futures contract prices, focusing on a previously untested old subsample. Specifically, they each month for each premium categorize each contract series as high, middle or low. They then measure gross performances of long-short (equally weighted high minus low) and long-only (equally weighted high) portfolios for each premium. They further assess diversification benefits by comparing a stocks-bonds portfolio with stocks-bonds-commodity futures portfolios. Using 25,595 nearest contract month returns (averaging 15.2 commodities per month for the full sample, but only 7.1 per month for the old untested subsample through 1959), U.S. stock and bond market returns and U.S. Treasury bill (T-bill) yield as the risk-free rate during 1877 through 2017, they find that:

Keep Reading

Net Speculators Position as Futures Return Predictor

Should investors rely on aggregate positions of speculators (large non-commercial traders) as indicators of expected futures market returns? In their November 2018 paper entitled “Speculative Pressure”, John Hua Fan, Adrian Fernandez-Perez, Ana-Maria Fuertes and Joëlle Miffre investigate speculative pressure (net positions of speculators) as a predictor of futures contract prices across four asset classes (commodity, currency, equity index and interest rates/fixed income) both separately and for a multi-class portfolio. They measure speculative pressure as end-of-month net positions of speculators relative to their average weekly net positions over the past year. Positive (negative) speculative pressure indicates backwardation (contango), with speculators net long (short) and futures prices expected to rise (fall) as maturity approaches. They measure expected returns via portfolios that systematically buy (sell) futures with net positive (negative) speculative pressure. They compare speculative pressure strategy performance to those for momentum (average daily futures return over the past year), value (futures price relative to its price 4.5 to 5.5 years ago) and carry (roll yield, difference in log prices of  nearest and second nearest contracts). Using open interests of large non-commercial traders from CFTC weekly legacy Commitments of Traders (COT) reports for 84 futures contracts series (43 commodities, 11 currencies, 19 equity indexes and 11 interest rates/fixed income) from the end of September 1992 through most of May 2018, along with contemporaneous Friday futures settlement prices, they find that: Keep Reading

Commodity Futures Momentum and Reversal

Do prices of commodity futures contract series reliably exhibit reversal and/or momentum? In their October 2018 paper entitled “Do Momentum and Reversal Strategies Work in Commodity Futures? A Comprehensive Study”, Andrew Urquhart and Hanxiong Zhang investigate the performance of four momentum/reversal trading strategies as applied to excess return indexes for 29 commodity futures contract series. Excess return indexes invest continuously in nearest S&P GSCI futures, rolling forward during the fifth to ninth business day of each month. The four strategies are:

  1. Pairs reversal trading – At the end of each formation interval, identify the five pairs of indexes (with equal capital commitments) that track most closely based on sum of squared deviations of normalized price differences. During the ensuing trading interval, when the normalized prices of any pairs diverge by at least two standard deviations of formation period differences, go long (short) the member of the pair that is undervalued (overvalued). Close all pair trades when prices re-converge at a daily close or at the end of the trading interval.
  2. Pairs momentum trading – The inverse of pairs reversal trading, wherein the long (short) position is the pair member exhibiting relative strength (weakness) during the trading interval.
  3. Conventional momentum – At the end of each month, rank all indexes by cumulative return over the formation interval. Go long (short) the equal-weighted 30% of assets with the highest (lowest) past returns during the ensuing holding interval.
  4. Nearness to high momentum – At the end of each month, rank all indexes based on nearness to respective formation interval highs. Go long (short) the equal-weighted 30% of assets that are nearest/at (farthest below) past highs during the ensuing holding interval.

They consider nine formation intervals (1, 3, 6, 9, 12, 24, 36, 48 and 60 months) and 21 holding intervals (1, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57 and 60 months).They assume that long-short strategies are about 50% collateralized, with capital therefore available to handle holding interval margin calls. They also test effects of 0.69% per year (0.06% per month) transaction costs. Using daily levels of six energy, 10 metal and 13 agriculture and live stock commodity futures excess return indexes during January 1979 through October 2017, they find that:

Keep Reading

Does the Sunspot Cycle Predict Grain Prices?

As a follow-up to “Sunspot Cycle and Stock Market Returns” a reader asked: “Sunspot activity does have a direct relationship to weather. Could one speculate on the agriculture market using the sunspot cycle?” To investigate, we relate sunspot activity to the fairly long U.S. Producer Price Index (PPI) for grains. Using monthly averages of daily sunspot counts and monthly PPI for grains during January 1926 (limited by PPI data) through October 2018, we find that: Keep Reading

Benefits of Volatility Targeting Across Asset Classes

Does volatility targeting improve Sharpe ratios and provide crash protection across asset classes? In their May 2018 paper entitled “Working Your Tail Off: The Impact of Volatility Targeting”, Campbell Harvey, Edward Hoyle, Russell Korgaonkar, Sandy Rattray, Matthew Sargaison, and Otto Van Hemert examine return and risk effects of long-only volatility targeting, which scales asset and/or portfolio exposure higher (lower) when its recent volatility is low (high). They consider over 60 assets spanning stocks, bonds, credit, commodities and currencies and two multi-asset portfolios (60-40 stocks-bonds and 25-25-25-25 stocks-bonds-credit-commodities). They focus on excess returns (relative to U.S. Treasury bill yield). They forecast volatility using realized daily volatility with exponentially decaying weights of varying half-lives to assess sensitivity to the recency of inputs. For most analyses, they employ daily return data to forecast volatility. For S&P 500 Index and 10-year U.S. Treasury note (T-note) futures, they also test high-frequency (5-minute) returns transformed to daily returns. They scale asset exposure inversely to forecasted volatility known 24 hours in advance, applying a retroactively determined constant that generates 10% annualized actual volatility to facilitate comparison across assets and sample periods. Using daily returns for U.S. stocks and industries since 1927, for U.S. bonds (estimated from yields) since 1962, for a credit index and an array of futures/forwards since 1988, and high-frequency returns for S&P 500 Index and 10-year U.S. Treasury note futures since 1988, all through 2017, they find that:

Keep Reading

Interplay of the Dollar, Gold and Oil

What is the interplay among investable proxies for the U.S. dollar, gold and crude oil? Do changes in the value of the dollar lead those in hard assets? To investigate, we relate the return series of three exchange-traded funds: (1) the futures-based PowerShares DB US Dollar Index Bullish (UUP); (2) the spot-based SPDR Gold Shares (GLD); and, (3) the spot-based United States Oil (USO). Using monthly, weekly and daily prices for these funds during March 2007 (limited by inception of UUP) through April 2018 (134 months), we find that: Keep Reading

Commodity, Equity Index and Currency Popular Pairs Trading

Are technical rules applied to pairs trading attractive after correcting for data snooping bias? In their March 2018 paper entitled “Pairs Trading, Technical Analysis and Data Snooping: Mean Reversion vs Momentum”, Ioannis Psaradellis, Jason Laws, Athanasios Pantelous and Georgios Sermpinis test a variety of technical trading rules for long-short trading of 15 commodity futures, equity indexes and currency pairs (all versus the U.S. dollar) frequently used on trading websites or offered by financial market firms. Specifically, they test 18,412 trend-following/momentum and contrarian/mean-reversion rules often applied by traders to past daily pair return spreads. They consider average excess (relative to short-term interest rate) return and Sharpe ratio as key metrics for rule selection and performance measurement. They use False Discovery Rate (FDR) to control for data snooping bias, such that 90% of the equally weighted best rules in FDR-corrected portfolios significantly outperform the benchmark. Most tests are in-sample. To test robustness of findings, they: (1) account for one-way trading frictions ranging from 0.02% to 0.05% across assets; (2) consider five subperiods to test consistency over time; and, (3) perform out-of-sample tests using the first part of each subperiod to select the best rules and roughly the last year to measure performance of these rules out-of-sample. Using daily prices of specified assets and daily short-term interest rates for selected currencies during January 1990 (except ethanol starts late March 2006) through mid-December 2016, they find that:

Keep Reading

Volatility Scaling for Momentum Strategies?

What is the best way to implement futures momentum and manage its risk? In their November 2017 paper entitled “Risk Adjusted Momentum Strategies: A Comparison between Constant and Dynamic Volatility Scaling Approaches”, Minyou Fan, Youwei Li and Jiadong Liu compare performances of five futures momentum strategies and two benchmarks:

  1. Cross-sectional, or relative, momentum (XSMOM) – each month long (short) the equally weighted tenth of futures contract series with the highest (lowest) returns over the past six months.
  2. XSMOM with constant volatility scaling (CVS) – each month scales the XSMOM portfolio by the ratio of a 12% target volatility to annualized realized standard deviation of daily XSMOM portfolio returns over the past six months.
  3. XSMOM with dynamic volatility scaling (DVS) – each month scales the XSMOM portfolio by the the ratio of next-month expected market return (a function of realized portfolio volatility and whether MSCI return over the last 24 months is positive or negative) to realized variance of XSMOM portfolio daily returns over the past six months.
  4. Time-series, or intrinsic, momentum (TSMOM) – each month long (short) the equally weighted futures contract series with positive (negative) returns over the past six months.
  5. TSMOM with time-varying volatility scaling (TSMOM Scaled) – each month scales the TSMOM portfolio by the ratio of 22.6% (the volatility of an equally weighted portfolio of all future series) to annualized exponentially weighted variance of TSMOM returns over the past six months.
  6. Equally weighted, monthly rebalanced portfolio of all futures contract series (Buy-and-Hold).
  7. Buy-and-Hold with time-varying volatility scaling (Buy-and-Hold Scaled) – each month scales the Buy-and-Hold portfolio as for TSMOM Scaled.

They test these strategies on a multi-class universe of 55 global liquid futures contract series, starting when at least 45 series are available in November 1991. They focus on average annualized gross return, annualized volatility, annualized gross Sharpe ratio, cumulative return and maximum (peak-to-trough) drawdown (MaxDD) as comparison metrics. Using monthly prices for the 55 futures contract series (24 commodities, 13 government bonds, 9 currencies and 9 equity indexes) during June 1986 through May 2017, they find that:

Keep Reading

Login
Daily Email Updates
Filter Research
  • Research Categories (select one or more)