Objective research to aid investing decisions

Value Investing Strategy (Strategy Overview)

Allocations for September 2020 (Final)
Cash TLT LQD SPY

Momentum Investing Strategy (Strategy Overview)

Allocations for September 2020 (Final)
1st ETF 2nd ETF 3rd ETF

Commodity Futures

These entries address investing and trading in commodities and commodity futures as an alternative asset class to equities.

Enhanced Commodity Futures Momentum Strategies

Does focus on nearest-expiration contracts in commodity futures momentum strategies leave money on the table? In their May 2014 paper entitled “Exploiting Commodity Momentum Along the Futures Curves”, Wilma De Groot, Dennis Karstanje and Weili Zhou investigate commodities futures momentum strategies that consider all available contract expirations. They hypothesize that a broadened contract universe could increase roll yield, reduce volatility and lower portfolio turnover. Their generic benchmark strategy each month buys (sells) the equally weighted half of commodities with the highest (lowest) 12-month returns using nearest-expiration contracts. They consider three alternatives to the generic strategy:

  1. Optimal-roll momentum: each month ranks commodities in the same way as the generic strategy, but buys the most backwardated contract for each winner commodity and sells the most contangoed contract for each loser commodity from among contracts with expirations up to 12 months.
  2. All-contracts momentum: each month first select for each commodity the contract expiration with the strongest and weakest momentum. Then rank the commodities based on these contracts and buy (sell) the equally weighted half with the highest (lowest) momentum.
  3. Low-turnover roll momentum: modify the optimal-roll momentum strategy by holding each position until it is about to expire or until it switches sides (long-to-short or short-to-long), whichever occurs first.

They assume fully collateralized portfolios, such that total monthly return for each position is change in month-end settlement price plus the risk-free interest rate (U.S. Treasury bill yield) earned by the collateral. They focus on changes in settlement prices (excess returns). They consider several ways of estimating trading frictions. Using daily and monthly prices of S&P GSCI components during January 1990 through September 2011 (initially 18 commodity series growing to all 24 by July 1997), they find that: Keep Reading

Impact of Commodities Financialization on Strategies

Has the growing role of financial investors in commodities markets (financialization) weakened performance of widely used momentum and term structure investing strategies? In his July 2014 paper entitled “Strategies Based on Momentum and Term Structure in Financialized Commodity Markets”, Adam Zaremba investigates impacts of financialization of commodity markets on the profitability of momentum and term structure strategies. His base momentum strategy is each month long (short) the half of commodity futures with higher (lower) returns over the past month. His base term structure strategy is long (short) the half of commodity futures with the largest positive or backwardated (negative or contangoed) difference in prices between the nearest and next-nearest contracts. For each commodity futures series and each strategy, he performs double-sorts on strategy parameters and the level of financial investor (non-commercial trader) participation from Commitments of Traders (COT) reports to measure the effects of financialization on strategy performance. All portfolios are equally weighted and fully collateralized. Using monthly total returns for 26 commodity futures series as available and a broad commodities index, along with position data from COT reports, during 1986 through 2013, he finds that: Keep Reading

Best Way to Trade Trends?

What is the best way to generate price trend signals for trading futures/forward contracts? In their December 2013 paper entitled “CTAs – Which Trend is Your Friend?”, Fabian Dori, Manuel Krieger, Urs Schubiger and Daniel Torgler compare risk-adjusted performances of three ways of translating trends into trading signals:

  1. Binary signals (up or down) trigger 100% long or 100% short trades. When trends are strong (ambiguous), this approach generates little trading (whipsaws/over-commitment to weak trends). The price impact of trading via this approach may be substantial for large traders.
  2. Continuously scaled signals trigger long or short trades with position size scaled according to the strength of up or down trend; the stronger the trend, the larger the position. Changes in trend strength generate incremental position adjustments.
  3. Empirical distribution signals trigger long or short trades with position size scaled according to the historical relationship between trend strength and future return. The strongest trend may not indicate the strongest future return, and may actually indicate return (and therefore position) reversal. Changes in trend strength generate position adjustments.

They test these three approaches for comparable trends exhibited by 96 futures/forward contract series, including: 30 currency pairs, 19 equity indexes, 11 government bond indexes, 8 short-term interest rates (STIR) and 28 commodities. They consider two risk-adjusted return metrics: annualized return divided by annualized volatility, and annualized return divided by maximum drawdown. They ignore trading frictions. Using prices for these 96 series from 1993 to 2013, they find that: Keep Reading

Effects of Commodities and Stocks on Currency Carry Trades

Are currency traders the last ones to know? In the February 2014 draft of their paper entitled “Cross-Asset Return Predictability: Carry Trades, Stocks and Commodities”, Helen Lu and Ben Jacobsen investigate whether commodity and stock index returns predict currency carry trade performance. They consider equally weighted carry trade strategies that each month buy (sell) one-month forward contracts for the one, two or three currencies with the highest (lowest) beginning-of-month interest rates and hold to maturity. They account for bid-ask spreads and express profits in U.S. dollars. They evaluate the power of three commodity indexes (CRB Spot, CRB Raw Industrials Spot and CRB Metals Spot) and three total return equity indexes (MSCI All Country, MSCI World and S&P 500) to predict carry trade profitability. Using monthly levels of the commodity and stock indexes and monthly one-month forward rates and spot rates for the G-10 currencies during February 1988 through December 2011, they find that: Keep Reading

Financialization and the Interaction of Commodities with the Economy

Has easy access to commodity allocations via exchange-traded instruments (financialization) changed the way commodity prices interact with the economy? In his February 2014 paper entitled “Macroeconomic Determinants of Commodity Returns in Financialized Markets”, Adam Zaremba investigates relationships between commodity returns and economic conditions in pre-financialization (before 2004) and post-financialization (2004 and after) environments. He defines an increase (decrease) in the nominal U.S. Industrial Production Index as economic growth (contraction). He employs the U.S. Consumer Price Index (CPI) to measure inflation. Using monthly levels of various global and sector commodity indexes in U.S. dollars as available, the nominal U.S. Industrial Production Index and CPI during December 1970 through November 2013, he finds that: Keep Reading

Futures Momentum Strategies and Financial Crises

Do trend following strategies widely used by managed futures funds break down during financial crises? In the December 2013 version of their paper entitled “Is This Time Different? Trend Following and Financial Crises”, Mark Hutchinson and John O’Brien examine the effectiveness of trend following strategies as applied to futures contract series during and between financial crises. They define a financial crisis interval as the two to four years after the start of the crisis. They consider six global crises: (1) the Great Depression commencing 1929: (2) the 1973 oil crisis; (3) the third world debt crisis of 1981; (4) the crash of October 1987; (5) the bursting of the dot-com bubble in 2000; and, (6) the sub-prime/euro crisis commencing in 2007. They also consider eight regional crises during 1977 through 2000. They calculate momentum returns for each asset class by each month weighting constituent contract series proportionally to their excess return over the past one to 12 months and inversely to an estimate of their volatility based on lagged data. They include estimates of transaction costs proportional to the value traded that vary by asset class and time period. They also incorporate management and incentive fees (based on high water mark) of 2% and 20%, respectively. Using actual and modeled futures prices encompassing 21 equity indexes, 13 government bonds, nine currency exchange rates and 21 commodities (and contemporaneous risk-free rates) during January 1921 through June 2013, they find that: Keep Reading

Intrinsic Momentum Diversified across Futures

Is simple momentum the secret sauce of Managed Futures funds? In their 2013 paper entitled “Demystifying Managed Futures”, Brian Hurst, Yao Ooi and Lasse Pedersen examine how well simple trend-following strategies based on time series (intrinsic or absolute) momentum explain the performance of Managed Futures funds. Their simple intrinsic momentum strategy goes long (short) a contract series with a positive (negative) return relative to the risk-free rate over 1-month, 3-month and 12-month look-back intervals. They apply the strategy to a liquid universe of 24 commodity futures, 9 equity futures, 13 government bond futures and 12 currency forwards. They adopt a simple diversification weighting that targets 40% annualized volatility for each position. They rebalance the diversified portfolio weekly at the Friday close based on data from the Thursday close. They ignore rebalancing/roll frictions. Using daily and weekly prices for 58 futures contract and currency forward series during January 1985 through June 2012, they find that: Keep Reading

Diversification Power of Financialized Commodities

Have investors overwhelmed commercial traders in commodity futures markets, thereby depressing the value of commodity futures as a diversifier of stocks and bonds? In his November 2013 papers entitled “Implications of Financialization for Commodity Investors: The Case of Roll Yields” and “Implications of Financialization for Strategic Asset Allocation: The Case of Correlations”, Adam Zaremba examines the effects of commodity futures market financialization on the potential diversification benefit of a passive allocation to commodities. He quantifies financialization as the share of open interest in commodity futures contracts held by non-commercial traders per Commitments of Traders reports of the Commodity Futures Trading Commission. He investigates specifically the effects of financialization on: (1) roll return, the return from continually shifting from expiring to longer-term commodity futures contracts to maintain a position; and, (2) the correlations of commodity futures returns with those of stocks and bonds. Then, in a mean-variance optimization framework from the perspective of a U.S. investor, he examines how these effects alter the diversification benefit of adding a commodity futures position to stocks and bonds. Using monthly returns of index proxies for the broad U.S. stock market, U.S. government bonds and a broad set of commodity futures from the end of 1991 through 2012, he finds that: Keep Reading

Comparing Precious Metals as Safe Havens

Are other precious metals more effective than gold as safe havens from turmoil in stock and bond markets? In their September 2013 paper entitled “Time Variation in Precious Metal Safe Haven Status — Evidence from the USA”, Brian Lucey and Sile Li compare and contrast the effectiveness of four precious metals (gold, silver, platinum and palladium) as safe havens from sharp declines in U.S. stocks (the S&P 500 Index) and U.S. bonds (a 10-year U.S. Treasury note index). They define an asset as a safe haven from another if returns of the former exhibit zero or negative correlation with returns of the latter when the latter experiences a sharp drawdown. A safe haven is different from a hedge, which has zero or negative return correlation with another asset or portfolio on average. They calculate returns for precious metals based on a continually rolling position in nearest month futures. They calculate return correlations quarter by quarter and focus on the worst 5% of drawdowns in stocks or bonds. Using daily futures contract prices for gold, silver, platinum and palladium and daily returns for the stock and bond indexes from the first quarter of 1989 through the second quarter of 2013, they find that: Keep Reading

Platinum as an Investment

Is platinum as good as gold? In the September 2013 version of their paper entitled “Analysis of the Investment Potential of Platinum Group Metals”, James Ross McCown and Ron Shaw evaluate the investment value of platinum group metals (platinum, palladium, rhodium, iridium, ruthenium and osmium). Using daily spot prices for platinum group metals, gold and crude oil, daily levels of a broad U.S. stock market index, monthly U.S. consumer and producer price indexes and monthly U.S. industrial production levels during July 1992 through December 2011, they find that: Keep Reading

Login
Daily Email Updates
Filter Research
  • Research Categories (select one or more)