Objective research to aid investing decisions

Value Investing Strategy (Strategy Overview)

Allocations for September 2023 (Final)

Momentum Investing Strategy (Strategy Overview)

Allocations for September 2023 (Final)
1st ETF 2nd ETF 3rd ETF

Fundamental Valuation

What fundamental measures of business success best indicate the value of individual stocks and the aggregate stock market? How can investors apply these measures to estimate valuations and identify misvaluations? These blog entries address valuation based on accounting fundamentals, including the conventional value premium.

Luxury Goods Stock Premium

Do stocks of firms focused on luxury goods outperform those of more prosaic companies? In his June 2019 paper entitled “Demand-Driven Risk and the Cross-Section of Expected Returns”, Alejandro Lopez-Lira examines aggregate performance of firms selling goods with high income elasticity (luxury goods), assuming that such firms are particularly exposed to demand-driven risk (consumption shocks). Hypothesizing that advertising, customer support and new feature development costs are relatively high for such firms, he proposes three accounting-based measures of demand-driven risk exposure:

  1. Indirect cost ratio (selling, general and administrative expenses, divided by cost of goods sold plus selling, general and administrative expenses).
  2. Indirect costs-to-net sales ratio.
  3. One minus the direct costs-to-net sales ratio.

He excludes financial, utilities, mining, petroleum refining and pharmaceuticals firms from analysis due to their insulation from consumer demand. Each June, he ranks remaining firms into fifths (quintiles) based on their indirect cost ratios, with the highest quintile most exposed to demand-driven risk. He then tracks monthly returns of the value-weighted quintiles over the next year. He further investigates interactions of demand-driven risk with competitive pressure, measuring the latter via textual analysis of Form 10-K submittals to gauge competitor product similarities/sales. Using annual accounting data, monthly stock prices and annual Form 10-Ks for the specified firms and contemporaneous monthly factor model returns as available during January 1962 through December 2016, he finds that:

Keep Reading

Accounting for Past Return to ESG Stocks

Does past performance of Environmental, Social, and Corporate Governance (ESG) stocks derive mostly from shift in demand from other stocks to ESG stocks? In his September 2021 paper entitled “Flow-Driven ESG Returns”, Philippe van der Beck examines whether flow of investor dollars toward ESG mutual funds explains aggregate performance of ESG stocks, as follows:

  • Construct an ESG portfolio that aggregates quarterly holdings of U.S. equity mutual funds that assert sustainability mandates.
  • Measure perceived sustainability of each stock by calculating the deviation of its ESG portfolio weight from its market portfolio weight.
  • Estimate the price pressure due to a flow of dollars into ESG mutual funds.
  • Combine perceived stock sustainability and price pressure to explore sensitivity of past ESG portfolio returns to level of dollar flow into ESG mutual funds.

Using mutual fund descriptions (with respect to importance of sustainability in investment decisions) and quarterly Form 13F mutual fund holdings data during 2000 through 2020, and underlying stock prices through the first quarter of 2021, he finds that:

Keep Reading

Examining Disruptive/Transformational Thematic Indexes

Leading index providers have introduced thematic stock indexes to address transformative macroeconomic, geopolitical or technological trends (for example, cybersecurity, robotics, autonomous vehicles and clean power). How do these indexes relate to standard asset pricing models? In his August 2021 paper entitled “Betting Against Quant: Examining the Factor Exposures of Thematic Indices”, David Blitz examines the performance characteristics of these indexes based on widely used factor models of stock returns and discusses why investors may follow these indexes via exchange-traded funds (ETF) despite unfavorable factor exposures. He considers 36 S&P indexes (narrower, equal-weighted) and 12 MSCI indexes (broader, capitalization-weighted) with at least three years of history. Using monthly returns for these 48 indexes and for components of the Fama-French 5-factor (market, size, book-to-market, profitability and investment) model and the momentum factor as available during June 2013 through April 2021, he finds that:

Keep Reading

Predicting Stock Market Crashes with Interpretable Machine Learning

Can machine learning-generated stock market crash predictions be amenable to human interpretation? In their June 2021 paper entitled “Explainable AI (XAI) Models Applied to Planning in Financial Markets”, Eric Benhamou, Jean-Jacques Ohana, David Saltiel and Beatrice Guez apply a gradient boosting decision tree (GBDT) to 150 technical, fundamental and macroeconomic inputs to generate daily predictions of short-term S&P 500 Index crashes. They define a crash as a 15-day S&P 500 Index return below its historical fifth percentile within the training dataset. The 150 model inputs encompass:

  1. Risk aversion metrics such as asset class implied volatilities and credit spreads.
  2. Price indicators such as returns, major stock index Sharpe ratios, distance from a long-term moving average and and equity-bond correlations.
  3. Financial metrics such as 12-month sales growth and price-to-earnings ratio forecasts.
  4. Macroeconomic indicators such Citigroup regional and global economic surprise indexes.
  5. Technical indicators such as market breath and index put-call ratio.
  6. Interest rates such as 10-year and 2-year U.S. Treasury yields and break-even inflation level.

They first rank and filter the 150 inputs based on GBDT to discard about two thirds of the variables. They then apply the Shapley value solution concept to identify the most important of the remaining variables and thereby support interpretation of methodology outputs. Using daily values of the 150 model inputs and daily S&P 500 Index roll-adjusted futures prices from the beginning of January 2003 through mid-January 2021 (with data up to January 2019 used for training, the next year for validation and the rest for testing), they find that:

Keep Reading

ESG News and Stock Returns

How do investors react to different kinds of firm-level environmental, social and governance (ESG) news? In their April 2021 paper entitled “Which Corporate ESG News does the Market React to?”, George Serafeim and Aaron Yoon examine stock returns around ESG news from analysts, media, advocacy groups and government regulators (but not firms themselves) as compiled/evaluated by TruValue Labs. Evaluation includes degree to which each news item is positive or negative. They segment the news sample based on materiality classifications from the Sustainability Accounting Standards Board (SASB). Using daily market-adjusted and industry-adjusted stock returns associated with 111,020 firm-day ESG news items spanning 3,126 companies during January 2010 through June 2018, they find that: Keep Reading

Effects of Capitalizing Intangibles on Factor Models of Stock Returns

Under current U.S. accounting rules, many investments in innovation, human resources and brand that are crucial to long-term competitiveness immediately reduce operating profits and earnings (are expensed rather than capitalized). Does failure to incorporate such intangible investments in firm investment and valuation ratios (book-to-market, profitability and return on equity) harm equity investment decisions? In their January 2021 paper entitled “Intangible Capital in Factor Models”, Huseyin Gulen, Dongmei Li, Ryan Peters and Morad Zekhnini study impacts of capitalizing intangible investments on three widely used factor models of stock returns: 3-factor (market, size, book-to-market)5-factor (adding profitability and investment); and, q-factor (market, size, investment, profitability). They focus on effects of intangibles on book-to-market ratio, investment and profitability. Using accounting data and stock returns for a broad sample of U.S. firms during July 1977 through December 2018, they find that: Keep Reading

Poor Firm Management and Stock Returns

Do negative environmental, social and governance (ESG) incidents (environmental pollution,
poor employment conditions or anti-competitive practices) indicate poor firm management and therefore underperforming stocks? In his February 2021 paper entitled “ESG Incidents and Shareholder Value”, Simon Glossner analyzes ESG incident data to determine whether: (1) history is predictive of future ESG incidents; (2) high incident rates impact firm performance: and, (3) the stock market prices incidents. Using over 80,000 incident news items, firm information and stock returns for 2,848 unique U.S. public firms starting January 2007 and a smaller sample for European firms starting January 2009, all through December 2017, he finds that: Keep Reading

Remaking Value Investing

Value investing performance over the past two decades is poor. Is this underperformance a temporary consequence of an unusual macro environment, or a reflection of permanent economic/equity market changes. In their February 2021 paper entitled “Value Investing: Requiem, Rebirth or Reincarnation?”, Bradford Cornell and Aswath Damodaran survey the history and alternative approaches to value investing, with focus on its failure in recent decades. They then discuss how value investing must adapt to recover. Based on the body of value investing research through 2020, they conclude that: Keep Reading

Valuation-based Stock Market Return Expectations

What performance should investors expect from the S&P 500 Index based on price-to-earnings (P/E) and Cyclically-Adjusted Price-to-Earnings (CAPE, or P/E10)? In their November 2020 paper entitled “Extreme Valuations and Future Returns of the S&P 500”, Shaun Rowles and Andrew Mitchell take a layered “regression upon a regression” approach to predict S&P 500 Index returns and level. First, to estimate future returns, they run a linear regression on P/E, P/E10, S&P 500 dividend yield, inflation, 10-year U.S. Treasury note yield, historical 1-year, 3-year, 5-year and 10-year S&P 500 Index returns and percentiles of many of these variables within their respective historical distributions. Then, they run separate linear regressions to predict 1-year, 3-year, 5-year and 10-year future annualized returns. Finally, they run a linear regression to model current S&P 500 Index level for comparison to actual current level. Using Robert Shiller’s U.S. stock market and economic data spanning January 1871 through June 2020, they find that: Keep Reading

Intangible Value Factor

Intangible assets derive largely from investments in employees, brand and knowledge that are expensed rather than booked. Despite large and growing importance of intangible assets, traditional measures of firm value ignore them. Are firm value assessments therefore defective? In their October 2020 paper entitled “Intangible Value”, Andrea Eisfeldt, Edward Kim and Dimitris Papanikolaou evaluate a value factor that includes intangible assets in book equity for each firm (HMLINT) following exactly the methodology used to construct the widely accepted Fama-French value factor (HMLFF). They measure intangible assets based on flows of Selling, General, and Administrative (SG&A) expenses. Using firm accounting data and associated monthly stock returns and Fama-French 5-factor model data for a broad sample of U.S. stocks during January 1975 through December 2018, they find that:

Keep Reading

Daily Email Updates
Filter Research
  • Research Categories (select one or more)