Objective research to aid investing decisions

Value Investing Strategy (Strategy Overview)

Allocations for January 2021 (Final)
Cash TLT LQD SPY

Momentum Investing Strategy (Strategy Overview)

Allocations for January 2021 (Final)
1st ETF 2nd ETF 3rd ETF

Economic Indicators

The U.S. economy is a very complex system, with indicators therefore ambiguous and difficult to interpret. To what degree do macroeconomics and the stock market go hand-in-hand, if at all? Do investors/traders: (1) react to economic readings; (2) anticipate them; or, (3) just muddle along, mostly fooled by randomness? These blog entries address relationships between economic indicators and the stock market.

Risk Aspects of Long and Short Futures Trend-following

How do the long and short sides of futures trend-following strategies differently affect portfolio riskiness? In their September 2016 paper entitled “The Long and Short of Trend Followers”, Jarkko Peltomaki, Joakim Agerback and Tor Gudmundsen-Sinclair investigate via linear regression behaviors of the long and short sides of commonly used trend-following strategies across equities, bonds, commodities and currency futures/forwards under different economic conditions. They model trend-following performance by combining two sets of rules: (1) four slow-reacting simple moving average pair crossover rules using 75-225, 100-300, 125-375 or 150-450 daily moving average pairs; and, (2) four fast-reacting moving average breakout rules based on fluctuations around a long-term moving average. They apply the same allocation method for all rules to set a constant initial risk per trade, adjusted daily by scaling inversely with volatility. They examine how long and short trend-following returns depend on economic environment, focusing on interest rates. They assume trading frictions total $30 per contract. Using futures contract data for 22 equity indexes, 15 government bonds, 17 commodities and six currencies relative to the U.S. dollar, and contemporaneous Commodity Trading Advisor (CTA) performance indexes, during 1984 through 2015, they find that: Keep Reading

Globalization Effects on Asset Return Comovement

Is global diversification within asset classes disappearing as worldwide economic and financial integration increases? In their August 2016 paper entitled “Globalization and Asset Returns”, Geert Bekaert, Campbell Harvey, Andrea Kiguel and Xiaozheng Wang examine whether economic and financial integration increases global comovement of country equity, bond and currency exchange market returns. They examine three measures of return comovement for each asset class: average pairwise correlation, average beta relative to the world market and average idiosyncratic volatility. They apply these measures separately to developed markets and emerging markets. Using monthly equity, bond and currency exchange market returns in U.S. dollars for 26 developed markets and 32 emerging markets as available from various inceptions through December 2014, they find that: Keep Reading

Money Velocity and the Stock Market

Regarding “Money Supply (M2) and the Stock Market”, a subscriber responded: “I’ve always thought…that both M2 and velocity were needed. If there’s more money, but it is not circulating, then it doesn’t have a chance to have much impact. That’s the situation we have right now for the most part.” The Federal Reserve Bank of St. Louis tracks money velocity based either M1 or M2 money supplies at a quarterly frequency, stating that: “Velocity is a ratio of nominal GDP to a measure of the money supply. It can be thought of as the rate of turnover in the money supply–that is, the number of times one dollar is used to purchase final goods and services included in GDP.” Specifically, the bank calculates money velocity as quarterly nominal GDP divided by average money supply during the quarter. Using quarterly values for seasonally adjusted Velocity of M1Velocity of M2 and the S&P 500 Index as available from the last quarter of 1958 through the second quarter of 2016 (232 quarters), we find that: Keep Reading

Money Supply (M1) and the Stock Market

A reader commented: “I couldn’t find an analysis for the M1 money supply similar to the one for M2. How about it? M2 cannot be an accurate money supply measure because it includes non-cash investments such as money market mutual funds. When the stock market corrects and people are exchanging stocks for say, money market mutual fund shares, the M2 figure will actually increase. The money supply is not literally increasing in such cases as no new cash is being created; there is merely an exchange of existing assets. Technically, only increasing the monetary base would increase the money supply, but M1 is a reasonable substitute for that as it includes the cash part of bank reserves.” The M1 money stock consists of funds that are readily accessible for spending: currency in circulation, traveler’s checks, demand deposits and other checkable deposits. Is there a reliable relationship between historical variation in M1 and stock market returns? Using weekly data for seasonally adjusted M1 and the S&P 500 Index during January 1975 through June 2016 (2,165 weeks), we find that: Keep Reading

Money Supply (M2) and the Stock Market

Some investing experts cite change in money supply as a potentially important driver of future stock market behavior. When the money supply grows (shrinks), they theorize, nominal asset prices tend to go up (down). Or conversely, money supply growth drives inflation, thereby elevating discount rates and depressing equity valuations. One measure of money supply is the M2 money stock, which consists of currency, checking accounts, saving accounts, small certificates of deposit and retail money market mutual funds. Is there a reliable relationship between historical variation in M2 and stock market returns? Using weekly data for seasonally adjusted M2 and the S&P 500 Index during November 1980 through June 2016 (1,861 weeks), we find that: Keep Reading

Testing 25 U.S. Stock Market Return Predictors

What variables best predict U.S. stock market returns? In his June 2016 paper entitled “Which Variables Predict and Forecast Stock Market Returns?”, David McMillan examines the power of 25 variables to predict excess return (relative to the 3-month U.S. Treasury bill yield) of Shiller’s S&P Composite Index both in-sample and out-of-sample. He chooses variables based on connectedness to expected cash flow/dividends and risk and assigns them to five groups:

  1. Financial ratios: dividend-price, price-to-earnings, cyclically adjusted price-to-earnings (CAPE or P/E10), Tobin’s Q and market capitalization-to-Gross Domestic Product (GDP).
  2. Economic:  GDP cycle, GDP acceleration (rate of change in GDP growth), consumption growth, 10-year to 3-month Treasuries term spread and inflation.
  3. Labor: wage growth, unemployment, natural rate of unemployment, productivity growth and labor market conditions.
  4. Housing: house price growth, house affordability, home ownership, housing supply and new house sales.
  5. Other: University of Michigan Consumer Sentiment, Purchasing Managers Index, National Financial Conditions Index, leverage and non-financial leverage.

He employs regressions to test in-sample predictive power. He then tests out-of-sample forecasts starting in 2000 using various forecast methods and accuracy measures and considering both single-variable and multi-variable models. Using the specified data series as available during 1973 through 2014, he finds that: Keep Reading

Enhancing Stock Market Prediction with Distilled Economic Variables

Can investors exploit economic data for monthly stock market timing? In their September 2015 paper entitled “Getting the Most Out of Macroeconomic Information for Predicting Excess Stock Returns”, Cem Cakmaklı and Dick van Dijk test whether a model employing 118 economic variables improves prediction of monthly U.S. stock market (S&P 500 Index) excess returns based on conventional valuation ratios (dividend yield and price-earnings ratio) and interest rate indicators (risk-free rate, change in risk-free rate and credit spread). Excess return means above the risk-free rate. They each month apply principal component analysis to distill from the 118 economic variables (or from subsets of these variables with the most individual power to predict S&P 500 Index returns) a small group of independent predictive factors. They then regress next-month S&P 500 Index excess returns linearly on these factors and conventional valuation ratios/interest rate indicators over a rolling 10-year historical window to generate excess return predictions. They measure effectiveness of the economic inputs in two ways:

  1. Directional accuracy of forecasts (proportion of forecasts that accurately predict the sign of next-month excess returns).
  2. Explicit economic value of forecasts via mean-variance optimal stocks-cash investment strategies that each month range from 200% long to 100% short the stock index depending on monthly excess return predictions as specified and monthly volatility predictions based on daily index returns over the past month, with transaction costs of 0.0%, 0.1% or 0.3%.

Using monthly values of the 118 economic variables (lagged one month to assure availability), conventional ratios/indicators and monthly and daily S&P 500 Index levels during January 1967 through December 2014, they find that: Keep Reading

ECRI’s Weekly Leading Index and the Stock Market

Financial market commentators and media sometimes cite the Economic Cycle Research Institute’s (ECRI) U.S. Weekly Leading Index (WLI) as an important economic indicator, implying that it is predictive of future stock market performance. According to ECRI, WLI “has a moderate lead over cyclical turns in U.S. economic activity.” ECRI publicly releases a preliminary (revised) WLI value with a one-week (two-week) lag. Does this indicator usefully predict U.S. stock market returns? Using WLI values for January 1967 through January 2016 and contemporaneous weekly levels of the S&P 500 Index, we find that: Keep Reading

Economic News Leaks to Some Traders?

Can small (unconnected) investors compete in trades on economic news? In the February 2016 draft of her paper entitled “Is Someone Front-Running You Around News Releases?”, Irene Aldridge examines U.S. stock price, volatility and trading activity around ISM Manufacturing Index and Construction Spending news releases (which occur while the stock market is open). Media violations of embargoes on pre-release distribution of such news, intended to promote widespread simultaneous scheduled release, could influence this activity. She uses average price response of Russell 3000 stocks as a market reaction metric. She considers news “direction” relative either to prior-month value (increase or decrease) or to consensus forecast (above or below). Using one-minute trading data for Russell 3000 Index stocks around monthly ISM Manufacturing Index and Construction Spending announcements during January 2013 through October 2015, she finds that: Keep Reading

Gold a Consistent Dynamic Inflation Hedge?

Is gold a consistent hedge against inflation? In their October 2015 preliminary paper entitled “Is Gold a Hedge Against Inflation? A Wavelet Time-Frequency Perspective”, Thomas Conlon, Brian Lucey and Gazi Salah Uddin examine the inflation-hedging properties of gold over an extended period at different measurement frequencies (investment horizons) in four economies (U.S., UK, Switzerland and Japan). They consider both realized and unexpected inflation. They also test the inflation-hedging ability of gold futures and gold stocks. Using monthly consumer price indexes (not seasonally adjusted) for the four countries and monthly returns for spot gold (bullion) in the four associated currencies since January 1968, monthly survey-based U.S. inflation expectations since January 1978, and monthly returns on the Philadelphia Gold and Silver Index (XAU) as a proxy for gold stocks since January 1984, all through December 2014, they find that: Keep Reading

Login
Daily Email Updates
Filter Research
  • Research Categories (select one or more)