Objective research to aid investing decisions

Value Investing Strategy (Strategy Overview)

Allocations for July 2024 (Final)
Cash TLT LQD SPY

Momentum Investing Strategy (Strategy Overview)

Allocations for July 2024 (Final)
1st ETF 2nd ETF 3rd ETF

Investing Expertise

Can analysts, experts and gurus really give you an investing/trading edge? Should you track the advice of as many as possible? Are there ways to tell good ones from bad ones? Recent research indicates that the average “expert” has little to offer individual investors/traders. Finding exceptional advisers is no easier than identifying outperforming stocks. Indiscriminately seeking the output of as many experts as possible is a waste of time. Learning what makes a good expert accurate is worthwhile.

Do ETFs Following Gurus/Insiders Work?

Do exchange-traded funds (ETF) that attempt to mimic holdings of hedge fund gurus and/or firm insiders offer attractive performance? To investigate, we consider seven ETFs, four live and three dead, in order of introduction:

    • Invesco Insider Sentiment (NFO) – focuses on stocks attracting interest of insiders such as company executives, fund managers and sell side analysts. This fund is dead as of February 2020.
    • Invesco BuyBack Achievers (PKW) – tracks the Nasdaq US BuyBack Achievers Index, comprised of stocks of U.S. firms with a net decline in shares outstanding of 5% or more in the last 12 months.
    • Direxion All Cap Insider Sentiment (KNOW) –  tracks the S&P Composite 1500 Executive Activity & Analyst Estimate Index, comprised of U.S. stocks that have favorable analyst ratings and are being acquired by firm insiders (top management, directors and large institutions). This fund is dead as of October 2020.
    • AlphaClone Alternative Alpha – (ALFA) – tracks the proprietary AlphaClone Hedge Fund Masters Index, comprised of U.S. securities held by the highest ranked managers of  hedge funds and institutions. This fund is dead as of August 2022.
    • Global X Guru Index (GURU) – tracks the Solactive Guru Index, comprised of the highest conviction ideas from a select pool of hedge funds.
    • Direxion iBillionaire (IBLN) –  tracks the proprietary iBillionaire Index, comprised of 30 U.S. mid and large cap securities. This fund is dead as of April 2018.
    • Goldman Sachs Hedge Industry VIP (GVIP) – tracks the proprietary GS Hedge Fund VIP Index, comprised of stocks appearing most frequently among the top 10 equity holdings of fundamentally driven hedge fund managers.

We use SPDR S&P 500 (SPY) as a simple benchmark for all these ETFs. We focus on monthly return statistics, along with compound annual growth rates (CAGR) and maximum drawdowns (MaxDD). Using monthly returns for the above guru/insider-following ETFs and SPY as available through September 2023, we find that: Keep Reading

Deep Reinforcement Learning Versus MPT

Does machine learning reliably offer better risk-adjusted portfolio performance than traditional modern portfolio theory (MPT)? In their August 2023 paper entitled “Comparing Deep RL and Traditional Financial Portfolio Methods”, Eric Benhamou, Jean-Jacques Ohana, Beatrice Guez, David Saltiel, Rida Laraki and Jamal Atif compare principles, methodologies and risk-adjusted performances of dynamic deep reinforcement learning (DRL) and MPT. The DRL approach seeks long-only allocations that maximize Sharpe ratio (calculated assuming a zero risk-free rate). DRL training data includes individual asset returns, portfolio drawdown and contextual variables including U.S. and European interest rates, the CBOE volatility index (VIX), credit default swap prices, currency rates (U.S. dollar index), GDP and CPI forecasts, crude oil/gold/copper inventories and global, U.S., European, Japanese and emerging markets economic surprise indexes. DRL training employs an expanding window, each year training on available historical data and testing on the next year. They consider three MPT portfolios also using expanding window of historical data to estimate inputs: (1) full MPT (Markowitz); (2) minimum variance; and, (3) risk parity. Their global test data consists of daily returns of 11 futures contract series for four major equity indexes, four major bond indexes and three major commodity indexes. They assume trading frictions of 0.02% of value traded. Using the specified (groomed) data during 2000 through mid-2023, they find that: Keep Reading

Should the “Anxious Index” Make Investors Anxious?

Since 1990, the Federal Reserve Bank of Philadelphia has conducted a quarterly Survey of Professional Forecasters. The American Statistical Association and the National Bureau of Economic Research conducted the survey from 1968-1989. Among other things, the survey solicits from experts probabilities of U.S. economic recession (negative GDP growth) during each of the next four quarters. The survey report release schedule is mid-quarter. For example, the release date of the third quarter 2023 report is August 11, 2023, with forecasts through the third quarter of 2024. The “Anxious Index” is the probability of recession during the next quarter. Are these forecasts meaningful for future U.S. stock market returns? Rather than relate the probability of recession to stock market returns, we instead relate one minus the probability of recession (the probability of good times). If forecasts are accurate, a relatively high (low) forecasted probability of good times should indicate a relatively strong (weak) stock market. Using survey results and quarterly S&P 500 Index levels (on survey release dates as available, and mid-quarter before availability of release dates) from the fourth quarter of 1968 through the third quarter of 2023 (220 surveys), we find that:

Keep Reading

AI and Asset Management

Will emerging artificial intelligence (AI) tools such as the generative large language model ChatGPT have important roles in the economy, including asset management? In his September 2023 paper entitled “Generative AI: Overview, Economic Impact, and Applications in Asset Management”, Martin Luk reviews the evolution of generative AI models, their economic impact and their applications in asset management. Specifically, he covers:

  • Key innovations and methodologies in large language models such as ChatGPT and in image-based, multimodal and tool-using generative AI models.
  • Impacts of generative AI on jobs and productivity in various industries, with focus on uses in investment management.
  • Dangers and risks associated with the use of generative AI, including the issue of hallucinations.

Based on review of nearly 200 source papers, he concludes that: Keep Reading

Online, Real-time Test of AI Stock Picking

Will equity funds “managed” by artificial intelligence (AI) outperform human investors? To investigate, we consider the performance of AI Powered Equity ETF (AIEQ). Per the offeror, the EquBot model supporting AIEQ: “…leverages IBM’s Watson AI to conduct an objective, fundamental analysis of U.S. domiciled common stocks, including Special Purpose Acquisitions Corporations (“SPAC”), and real estate investment trusts (“REITs”) based on up to ten years of historical data and apply that analysis to recent economic and news data… Each day, the EquBot Model…identifies approximately 30 to 200 companies with the greatest potential over the next twelve months for appreciation and their corresponding weights, targeting a maximum risk adjusted return versus the broader U.S. equity market. …The EquBot model limits the weight of any individual company to 10%. At times, a significant portion of the Fund’s assets may consist of cash and cash equivalents.” We use SPDR S&P 500 (SPY) as a simple benchmark for AIEQ performance. Using daily and monthly dividend-adjusted closes of AIEQ and SPY from AIEQ inception (October 18, 2017) through September 2023, we find that: Keep Reading

Median Long-term Returns of U.S. Stocks and Portfolio Concentration

Are concentrated stock portfolios inherently disadvantaged by lack of diversification? In his June 2023 paper entitled “Underperformance of Concentrated Stock Positions”, Antti Petajisto analyzes rolling future returns for individual U.S. stocks relative to the broad U.S. stock market (market-adjusted) as a way to assess implications of concentrated stock portfolios. He focuses on median return as most representative of investor experience. He considers monthly rolling investment horizons of five, 10 and 20 years because concentrated stock positions are typically long-term holdings. He looks also at the relationship between 5-year past returns and future returns for individual stocks. Using monthly returns for individual U.S. common stocks from an evolving sample similar to the Russell 3000 (no microcaps) and for the overall capitalization-weighted U.S. stock market during January 1926 through December 2022, he finds that:

Keep Reading

Robustness of Machine Learning Return Forecasting

Are new machine learning portfolio strategies practically better than old stock factor ways? In their August 2023 paper entitled “Predicting Returns with Machine Learning Across Horizons, Firms Size, and Time”, Nusret Cakici, Christian Fieberg, Daniel Metko and Adam Zaremba examine the ability of various machine learning models to predict stock returns for: (1) monthly and annual return forecast horizons; (2) three ranges of firm size; and, (3) two subperiods. They apply eight machine learning models (including simple and penalized linear regressions, dimension reduction techniques, regression trees and neural networks) to 153 firm/stock characteristics following approaches typical in the finance literature. For each model, they employ rolling 11-year intervals, with:

  • Model training using the first seven years.
  • Model validation using the next three years.
  • Out-of-sample testing the last year using hedge portfolios that are long (short) the value-weighted fifth, or quintile, of stocks with the highest (lowest) predicted returns, reformed either monthly or annually depending forecast horizon.

They focus on gross 6-factor (market, size, book-to-market, profitability, investment, momentum) alpha to assess machine learning effectiveness. Using data for the selected 153 firm/stock characteristics and associated stock returns, measured monthly, for all listed U.S. stocks during January 1972 through December 2020, they find that: Keep Reading

Blending AI Stock Picking and Conventional Portfolio Optimization

Should investors trust artificial intelligence (AI) models such as ChatGPT to pick stocks? In their August 2023 paper entitled “ChatGPT-based Investment Portfolio Selection”, Oleksandr Romanko, Akhilesh Narayan and Roy Kwon explore use of ChatGPT to recommend 15, 30 or 45 S&P 500 stocks, with portfolio weights, based on textual sentiment as available to Chat GPT via web content up to September 2021. For robustness, they ask ChatGPT to repeat recommendations for each portfolios 30 times and select the 15, 30 or 45 most frequently recommended stocks for respective portfolios. They then test out-of-sample performance of the following five implementations of each portfolio during September 2021 to July 2023, mid-March 2023 to July 2023, and May 2023 to July 2023:

  1. ChatGPT picks and ChatGPT weights.
  2. ChatGPT picks weighted equally.
  3. ChatGPT picks weighted based on minimum variance (Min Var) weights from a 5-year rolling weekly history.
  4. ChatGPT picks weighted based on maximum return (Max Ret) weights from a 5-year rolling weekly history.
  5. ChatGPT picks weighted based on maximum Sharpe ratio (Max Sharpe) weights from a 5-year rolling weekly history.

For benchmarking, they consider:

  • Long-only portfolios that incorporate all possible combinations of 15, 30 or 45 S&P 500 stocks weighted as above for Min Var, Vax Ret or Max Sharpe.
  • The S&P 500 Index, Dow Jones Industrial Average and the NASDAQ Index.
  • Average performance of 13 popular equity funds.

Using weekly data as specified up to September 2021 for training and subsequent weekly data through June 2023 for out-of-sample testing, they find that:

Keep Reading

Machine Stock Return Forecast Disagreement and Future Return

Is dispersion of stock return forecasts from different machine learning models trained on the same history (as a proxy for variation in human beliefs) a useful predictor of stock returns? In their August 2023 paper entitled “Machine Forecast Disagreement”, Turan Bali, Bryan Kelly, Mathis Moerke and Jamil Rahman relate dispersion in 100 monthly stock return predictions for each stock generated by randomly varied versions of a machine learning model applied to 130 firm/stock characteristics. They measure machine return forecast dispersion for each stock as the standard deviation of predicted returns. They then each month sort stocks into tenths (deciles) based on this dispersion, form either a value-weighted or an equal-weighted portfolio for each decile and compute average next-month portfolio return. Their key metric is average next-month return for a hedge portfolio that is each month long (short) the stocks in the lowest (highest) decile of machine return forecast dispersions. Using the 130 monthly firm/stock characteristics and associated monthly stock returns for a broad sample of U.S. common stocks (excluding financial and utilities firms and stocks trading below $5) during July 1966 through December 2022, they find that:

Keep Reading

Use Analyst Target Price Forecasts to Rank Stocks?

While prior research indicates that analyst forecasts of future stock returns are substantially biased upward, might the relative rankings of return forecasts be informative? In their June 2023 paper entitled “Analysts Are Good at Ranking Stocks”, Adam Farago, Erik Hjalmarsson and Ming Zeng apply within-analyst 12-month stock price targets to rank stocks in two ways:

  1. Average Demeaned Return – each month, demean the returns implied by target prices from an analyst by subtracting from each return the average forecasted return for that analyst. Then, average the demeaned returns for a given stock across all analysts.
  2. Average Ranking – each month, rank stocks by forecasted return for each analyst. Then, average the rankings for a given stock across all analysts covering that stock.

Both approaches remove the upward biases observed in raw target prices. To test analyst forecast informativeness, they then form hedge portfolios that are each month long (short) the equal-weighted or value-weighted fifths, or quintiles, of stocks with the highest (lowest) demeaned returns or rankings that month. Using 12-month target prices for each analyst who issues targets for at least three stocks during a month and associated monthly firm characteristics and stock prices during March 1999 through December 2021, they find that:

Keep Reading

Login
Daily Email Updates
Filter Research
  • Research Categories (select one or more)