Investing Expertise

Can analysts, experts and gurus really give you an investing/trading edge? Should you track the advice of as many as possible? Are there ways to tell good ones from bad ones? Recent research indicates that the average “expert” has little to offer individual investors/traders. Finding exceptional advisers is no easier than identifying outperforming stocks. Indiscriminately seeking the output of as many experts as possible is a waste of time. Learning what makes a good expert accurate is worthwhile.

Page 1 of 1712345678910...Last »

Risk of Financial Advisor Misconduct

How should investors assess the risk of financial advisor misconduct? In their March 2016 paper entitled “The Market for Financial Adviser Misconduct”, Mark Egan, Gregor Matvos and Amit Seru investigate the recent extent of misconduct among registered financial advisors (“advisors”) and financial advisory firms in the U.S. Their data include employment history, customer disputes, disclosed investigations and disciplinary events (civil, criminal and regulatory). Using information on 1.2 million registered financial advisors (644,277 current and 638,528 former) during 2005 through 2015, they find that: Keep Reading

Should the “Anxious Index” Make Investors Anxious?

Since 1990, the Federal Reserve Bank of Philadelphia has conducted a quarterly Survey of Professional Forecasters. The American Statistical Association and the National Bureau of Economic Research conducted the survey from 1968-1989. Among other things, the survey solicits from economic experts the probabilities of U.S. economic recession (negative GDP growth) during each of the next four quarters. The survey report release schedule is mid-quarter. For example, the release date of the survey report for the first quarter of 2016 is February 12, 2016, with forecasts for the second quarter of 2016 through the first quarter of 2017. The “Anxious Index” is the probability of recession during the next quarter. When professional forecasters are relatively optimistic (pessimistic) about the economy, does the stock market go up (down) over the coming quarters? Using survey results and quarterly S&P 500 Index levels (measured in the middle of calendar quarters to approximate release dates of survey results) from the fourth quarter of 1968 through the first quarter of 2016 (190 surveys), we find that: Keep Reading

Pick the Worst-performing Funds?

Is selecting mutual funds based on strong performance over the last three years helpful (discovering fund manager skill) or harmful (signaling imminent fund strategy mean reversion)? In the February 2016 version of their paper entitled “The Harm in Selecting Funds that Have Recently Outperformed”, Bradford Cornell, Jason Hsu and David Nanigian investigate future mutual fund performance based on recent past performance relative to stated benchmarks. They focus on a past performance interval of three years because: institutional consultants cite this measurement as one of the most important criterion for fund selection; and, Morningstar’s rating algorithm emphasizes three-year past performance. Specifically, every three years they:

  1. Rank funds by expense ratio and exclude the highest tenth as likely poor choices.
  2. Define Winner, Median and Loser funds as the tenths of the rest with the highest, middle (centered on the 50th percentile) and lowest benchmark-adjusted returns the past three years.
  3. Track the performance of the equally weighted and monthly rebalanced Winner, Median and Loser groups over the next three years.

Using benchmark-adjusted returns for actively managed U.S. equity mutual funds during January 1994 through December 2015, they find that: Keep Reading

Hedge Funds vs. Mutual Funds: Give and Take

Who are the givers and who are the takers among mutual funds and hedge funds? In their January 2016 paper entitled “Style and Skill: Hedge Funds, Mutual Funds, and Momentum”, Mark Grinblatt, Gergana Jostova, Lubomir Petrasek and Alexander Philipov analyze quarter-to-quarter changes in Form 13F stock holdings to assess investment styles and sources of performance for hedge funds and mutual funds. They focus on the interaction between portfolio weight changes and future stock returns to measure investing skill. They calculate fund alpha via adjustments for stock size, book-to-market ratio and (when appropriate) momentum. Using quarterly 13F filings of 589 mutual funds and 1,342 hedge funds during 1998 to 2012, they find that: Keep Reading

Following the Leaders On SeekingAlpha and StockTwits

Do SeekingAlpha and StockTwits offer valuable stock-picking information? In their March 2015 paper entitled “Crowds on Wall Street: Extracting Value from Collaborative Investing Platforms”, Gang Wang, Tianyi Wang, Bolun Wang, Divya Sambasivan, Zengbin Zhang, Haitao Zheng and Ben Zhao evaluate the stock-picking expertise available via SeekingAlpha and StockTwits. They tailor stock sentiment measures for these sources and relate these measures to future stock and stock market performance. They test ranking of author informativeness both directly via future stock returns and indirectly by level of reader interaction (comments). They then test strategies for exploiting sentiments of top authors. Finally, they summarize responses to a May 2014 survey of 500 SeekingAlpha authors (95 responses) and 500 non-contributing SeekingAlpha users (104 responses). Using SeekingAlpha content from launch in 2004 through March 2014, StockTwits content from launch in 2009 through February 2014 and daily returns (not including dividends) from associated individual stocks and S&P 500 SPDR (SPY) as a market proxy, they find that: Keep Reading

Mark Hulbert’s Nasdaq Newsletter Sentiment Index

“Mark Hulbert’s NASDAQ Newsletter Sentiment Index” reviews the usefulness of the Hulbert Stock Newsletter Sentiment Index (HSNSI), which “reflects the average recommended stock market exposure among a subset of short-term market timers tracked by the Hulbert Financial Digest.” Mark Hulbert presents HSNSI as a contrarian signal for future stock returns; when HSNSI is high (low), he views the outlook for stocks as materially bearish (bullish). In recent years, he has shifted emphasis in his MarketWatch columns from HSNSI to the Hulbert Nasdaq Newsletter Sentiment Index (HNNSI), stating that: “Since the Nasdaq responds especially quickly to changes in investor mood, and because those timers are themselves quick to shift their recommended exposure levels, the HNNSI is the Hulbert Financial Digest’s most sensitive barometer of investor sentiment.” Is HNNSI useful? Using a small sample of 38 values of HNNSI over the period April 2010 through September 2015 (generated by searching MarketWatch.com for “HNNSI”) and contemporaneous daily closes of the S&P 500 Index, we find that: Keep Reading

Exploiting Crowdsourced Earnings Estimates and Stock Sentiments

Are readily available crowdsourced firm earnings estimates and stock sentiment measurements exploitable? In the September 2015 revision of their paper entitled “Tweet Sentiments and Crowd-Sourced Earnings Estimates as Valuable Sources of Information Around Earnings Releases”, Jim Kyung-Soo Liew,  Shenghan Guo and Tongli Zhang investigate whether earnings estimates from Estimize and sentiment measurements from iSentium usefully predict stock behavior after earnings announcements. Estimize aggregates inputs from students, independent researchers, private investors, sell-side professionals and buy-side analysts to generate earnings estimates. iSentium derives sentiment scores (ranging from -30 to +30) from real-time natural language processing of Twitter texts about stocks, market indexes and exchange-traded funds. The authors relate pre-announcement earnings estimates and sentiment to post-earnings announcement stock returns. Using Estimize and iSentium data as available, Wall Street consensus earnings estimates, actual firm quarterly earnings and associated stock returns for 16,840 earnings announcements during November 2011 through December 2014, they find that: Keep Reading

Technical vs. Fundamental Investment Recommendations

Are expert technicians or fundamentalists better forecasters of short-term and intermediate-term asset returns? In the August 2015 version of their paper entitled “Talking Numbers: Technical versus Fundamental Recommendations”, Doron Avramov, Guy Kaplanski and Haim Levy assess the economic value of dual technical and fundamental recommendations presented simultaneously on “Talking Numbers”, a CNBC and Yahoo joint broadcast… “featuring fundamental and technical recommendations before and during the market open. Dual recommendations are made by highly experienced analysts representing prominent institutions.” Recommendations address both individual stocks and asset classes, including U.S. and foreign broad equity indexes, sector/industry equity indexes, bonds, commodities and exchange rates. Using 1,000 dual recommendations on 262 stocks and 620 dual recommendations on other assets, along with associated price data, during November 2011 through December 2014, they find that: Keep Reading

Debating Active Share as Fund Performance Predictor

“Measuring the Level and Persistence of Active Fund Management” (pro) and “Fund Activeness Predicts Performance?” (con) summarize debate on the ability of Active Share, how much portfolio holdings differ from a benchmark index, to predict mutual fund performance. The authors of the con paper summarized in the latter (principals of AQR Capital Management) assert that “neither theory nor data justify the expectation that Active Share might help investors improve their returns.” In his June 2015 paper entitled “AQR in Wonderland: Down the Rabbit Hole of ‘Deactivating Active Share’ (and Back Out Again?)”, Martijn Cremers rejoins the debate by examining the methodology and motives of the con paper. Using data on active U.S. equity mutual funds from the original research, and holdings/performance data for seven AQR Capital Management funds offered to retail investors that concentrate in U.S. stocks as available through December 2014, he finds that: Keep Reading

AAII Stock Screens

A reader asked: “The American Association of Individual Investors (AAII) has a lot of strategies they have been paper-trading over many years at Stock Screens. It seems like every strategy builds upon a well-known investing book or otherwise publicized strategy from the last 40 years. Have you ever done an evaluation of those performance results?” According to AAII: “These approaches run the full spectrum, from those that are value-based to those that focus primarily on growth. Some approaches are geared toward large-company stocks, while others uncover micro-sized firms. Most fall somewhere in the middle.” AAII provides performance histories, risk-return statistics and characteristics for all screens. AAII cautions that: “The impact of factors such as commissions, bid-ask spreads, cash dividends, time-slippage (time between the initial decision to buy a stock and the actual purchase) and taxes is not considered.” Using monthly returns and turnovers for the equally weighted portfolios generated by the available 63 screens during January 1998 through May 2015 (209 months), along with contemporaneous returns for SPDR S&P 500 (SPY), Vanguard Small Cap Index Fund (NAESX) and Vanguard Total Stock Market Index Fund (VTSMX), we find that: Keep Reading

Page 1 of 1712345678910...Last »
Login
Email Subscribe
Current Momentum Winners

ETF Momentum Signal
for May 2016 (Final)

Winner ETF

Second Place ETF

Third Place ETF

Gross Compound Annual Growth Rates
(Since August 2006)
Top 1 ETF Top 2 ETFs
11.3% 11.5%
Top 3 ETFs SPY
12.4% 7.2%
Strategy Overview
Current Value Allocations

ETF Value Signal
for May 2016 (Final)

Cash

IEF

LQD

SPY

The asset with the highest allocation is the holding of the Best Value strategy.
Gross Compound Annual Growth Rates
(Since September 2002)
Best Value Weighted 60-40
12.7% 9.8% 7.8%
Strategy Overview
Recent Research
Popular Posts
Popular Subscriber-Only Posts