Objective research to aid investing decisions

Value Investing Strategy (Strategy Overview)

Allocations for April 2025 (Final)
Cash TLT LQD SPY

Momentum Investing Strategy (Strategy Overview)

Allocations for April 2025 (Final)
1st ETF 2nd ETF 3rd ETF

Volatility Effects

Reward goes with risk, and volatility represents risk. Therefore, volatility means reward; investors/traders get paid for riding roller coasters. Right? These blog entries relate to volatility effects.

Validating Use of Wilder Volatility Stops to Time the U.S. Stock Market

Can investors reliably exploit the somewhat opaquely presented strategy summarized in “Using Wilder Volatility Stops to Time the U.S. Stock Market”, which employs Welles Wilder’s Average True Range (ATR) volatility metric to generate buy and sell signals for broad U.S. stock market indexes? To investigate, we each trading day for the SPDR S&P 500 ETF Trust (SPY):

  1. Compute true range as the greatest of: (a) daily high minus low; (b) absolute value of daily high minus previous close; and, (c) absolute value of daily low minus previous close.
  2. Calculate ATR as the simple average of the last five true ranges (including the current one).
  3. Generate a Wilder Volatility Stop (WVS) by multiplying ATR by a risk factor of 2.5.
  4. When out of SPY, buy when it closes above a dynamic trendline defined by a trend minimum plus current WVS (breakout). When in SPY, sell when it closes below a dynamic trendline defined by a trend maximum minus current WVS (breakdown).

We perform the above calculations using raw (not adjusted for dividends) daily SPY prices, but use dividend-adjusted prices to calculate returns. We assume any breakout/breakdown signal and associated SPY-cash switch occurs at the same close. We initially ignore SPY-cash switching frictions, but then test outcome sensitivity to different levels of frictions. We ignore return on cash due to frequency of switching. We further test outcome sensitivity to parameter choices and to an alternative definition of ATR. We use buy-and-hold SPY as a benchmark. Using daily raw and dividend-adjusted prices for SPY during January 1993 (inception) through most of October 2024, we find that: Keep Reading

Volatility of Volatility as Stock Market Return Predictor

Some experts interpret stock market return volatility as an indicator of investor sentiment, with high (low) volatility indicating ascendancy of fear (greed). Volatility of volatility (VoV) would thus indicate uncertainty in investor sentiment. Does the risk associated with this uncertainty depress stock prices and thereby predict strong stock market returns? To investigate, we consider two measures of U.S. stock market volatility: (1) realized volatility, calculated as standard deviation of daily S&P 500 Index returns over the last 21 trading days (annualized); and, (2) implied volatility as measured by the Chicago Board Options Exchange Market Volatility Index (VIX). For both, we calculate VoV as the standard deviation of volatility over the past 21 trading days and test the ability of VoV to predict SPDR S&P 500 (SPY) returns. To avoid overlap in volatility and VoV calculations, we focus on monthly return intervals. Using daily values of the S&P 500 Index since December 1989 and VIX since inception in January 1990, and monthly dividend-adjusted SPY closes since inception in January 1993, all through August 2024, we find that: Keep Reading

Are Equity Multifactor ETFs Working?

Are equity multifactor strategies, as implemented by exchange-traded funds (ETF), attractive? To investigate, we consider eight multifactor ETFs, all currently available:

  • iShares Edge MSCI Multifactor USA (LRGF) – holds large and mid-cap U.S. stocks with focus on quality, value, size and momentum, while maintaining a level of risk similar to that of the market. The benchmark is iShares Russell 1000 (IWB).
  • iShares Edge MSCI Multifactor International (INTF) – holds global developed market ex U.S. large and mid-cap stocks based on quality, value, size and momentum, while maintaining a level of risk similar to that of the market. The benchmark is iShares MSCI ACWI ex US (ACWX).
  • Goldman Sachs ActiveBeta U.S. Large Cap Equity (GSLC) – holds large U.S. stocks based on good value, strong momentum, high quality and low volatility. The benchmark is SPDR S&P 500 (SPY).
  • John Hancock Multifactor Large Cap (JHML) – holds large U.S. stocks based on smaller capitalization, lower relative price and higher profitability, which academic research links to higher expected returns. The benchmark is SPY.
  • John Hancock Multifactor Mid Cap (JHMM) – holds mid-cap U.S. stocks based on smaller capitalization, lower relative price and higher profitability, which academic research links to higher expected returns. The benchmark is SPDR S&P MidCap 400 (MDY).
  • JPMorgan Diversified Return U.S. Equity (JPUS) – holds U.S. stocks based on value, quality and momentum via a risk-weighting process that lowers exposure to historically volatile sectors and stocks. The benchmark is SPY.
  • Xtrackers Russell 1000 Comprehensive Factor (DEUS) – seeks to track, before fees and expenses, the Russell 1000 Comprehensive Factor Index, which seeks exposure to quality, value, momentum, low volatility and size factors. The benchmark is IWB.
  • Vanguard U.S. Multifactor (VFMF) – uses a rules-based quantitative model to evaluate U.S. common stocks and construct a U.S. equity portfolio that seeks to achieve exposure to multiple factors across market capitalizations (large, mid and small). The benchmark is iShares Russell 3000 (IWV).

We focus on monthly return statistics, along with compound annual growth rates (CAGR) and maximum drawdowns (MaxDD). Using monthly returns for the seven equity multifactor ETFs and benchmarks as available through August 2024, we find that: Keep Reading

Crypto-asset Price Drivers

How do crypto-asset prices interact with conventional market risks, monetary policy and crypto-specific factors? In their July 2024 paper entitled “What Drives Crypto Asset Prices?”, Austin Adams, Markus Ibert and Gordon Liao investigate factors influencing crypto-asset returns using a sign-restricted, structural vector auto-regressive model. Specifically, they decompose daily Bitcoin returns into components reflecting:

  • Monetary policy – estimated from effects of changes in the short-term risk-free rate on crypto-asset prices.
  • Conventional risk premiums – estimated from daily interactions of 2-year zero coupon U.S. Treasury notes (T-notes) and the S&P 500 Index to account for changes in risk compensation required for holding traditional financial assets.
  • Crypto risk premium – estimated from variations in the risk compensation demanded
    by investors for holding crypto assets as indicated by crypto-asset market liquidity and volatility.
  • Level of crypto adoption – estimated from co-movements of Bitcoin and stablecoin market capitalizations to reflect crypto-asset innovation, regulatory changes and sentiment shifts.

Using daily data for the risk-free rate, S&P 500 Index, T-notes, Bitcoin and two stablecoins (USDT and USDC), during January 2019 through February 2024, they find that: Keep Reading

VIX Seasonality

Does the CBOE Volatility Index (VIX) exhibit exploitable seasonality? To investigate, we calculate by calendar month and compare average monthly:

Using monthly closes of VIX since January 1990, monthly split-adjusted closes for  for VIXY since inception in January 2011 and monthly split-adjusted closes for SVXY since inception in October 2011, all through June 2024, we find that: Keep Reading

Corroborating Findings that the S&P 500 Index Predicts VIX Futures

“Use Short-term S&P 500 Index Indicators to Predict VIX Futures?” describes research finding a potentially exploitable relationship between S&P 500 Index short-term overbought/oversold conditions and short-term VIX futures gross returns. Do findings transfer to short-term VIX futures exchange-traded funds (ETF)? To investigate, we look at predictive relationships between daily SPDR S&P 500 ETF Trust (SPY) returns and daily returns for:

Using daily dividend-adjusted values of SPY since January 2011, and daily split-adjusted values of VIXY since January 2011 and SVXY since October 2011, all through most of June 2024, we find that: Keep Reading

Use Short-term S&P 500 Index Indicators to Predict VIX Futures?

Does the S&P 500 Index (SPX) or the CBOE Volatility Index (VIX) yield better short-term trading signals for stocks and VIX futures? In the May 2024 revision of his paper entitled “Chicken and Egg: Should you use the VIX to time the SPX? Or use the SPX to time the VIX?”, Robert Hanna explores mutual predictive relationships between SPX and VIX, with an eye toward exploitation via market timing strategies. He considers several long-term trend indicators to investigate whether SPX or VIX data offers better SPX return predictions. He considers two types of short-term overbought/oversold predictive rules: (1) short-term relative strength index (RSI) readings of 2, 3 and 4 days; and, (2) short-term high and low readings of 5 to 25 days in length. He applies both sets of short-term rules separately to SPX and VIX to predict movements of SPX and VIX futures. Using daily SPX and VIX levels since 1990 and short-term VIX futures prices since 2007, all through 2023, he finds that: Keep Reading

Are Low Volatility Stock ETFs Working?

Are low volatility stock strategies, as implemented by exchange-traded funds (ETF), attractive? To investigate, we consider eight of the largest low volatility ETFs, all currently available, in order of longest to shortest available histories:

We focus on monthly return statistics, along with compound annual growth rates (CAGR) and maximum drawdowns (MaxDD). Using monthly returns for the low volatility stock ETFs and their benchmark ETFs as available through May 2024, we find that: Keep Reading

Are IPO ETFs Working?

Are exchange-traded funds (ETF) focused on Initial Public Offerings of stocks (IPO) attractive? To investigate, we consider three of the largest IPO ETFs and one recent Special Purpose Acquisition Company (SPAC) ETF, one of which is no longer available, in order of longest to shortest available histories:

We focus on monthly return statistics, along with compound annual growth rates (CAGR) and maximum drawdowns (MaxDD). For all these ETFs, we use SPDR S&P 500 (SPY) as the benchmark. Using monthly returns for the IPO ETFs and SPY as available through April 2024, we find that:

Keep Reading

Invest with the Fed?

Does Federal Reserve (Fed) policy strongly and differently affect individual stock? In his April 2024 paper entitled “Navigating Federal Reserve Policy with IFED”, Rufus Rankin analyzes performance of the Invest With the Fed (IFED) stock selection strategy, which selects portfolios positioned to prosper across environments signaled by Fed actions. Specifically, the strategy selects individual equities based on 12 factors, adjusting weights of these factors based on Fed policy signals. The strategy rebalances with Fed policy changes or in June when there is no policy change for a year. He looks at two indexes representing different versions of the strategy:

  1. IFED US-Large Cap Index (IFED-L), with the S&P 500 Index (S&P 500) as a benchmark.
  2. IFED US Large-Cap Low Volatility Index (IFED-LV), with the S&P 500 Low Volatility Index (S&P 500 LV) as a benchmark.

Using monthly returns during April 2002 through September 2023, he finds that: Keep Reading

Login
Daily Email Updates
Filter Research
  • Research Categories (select one or more)