Objective research to aid investing decisions

Value Investing Strategy (Strategy Overview)

Allocations for October 2020 (Final)

Momentum Investing Strategy (Strategy Overview)

Allocations for October 2020 (Final)
1st ETF 2nd ETF 3rd ETF

Economic Indicators

The U.S. economy is a very complex system, with indicators therefore ambiguous and difficult to interpret. To what degree do macroeconomics and the stock market go hand-in-hand, if at all? Do investors/traders: (1) react to economic readings; (2) anticipate them; or, (3) just muddle along, mostly fooled by randomness? These blog entries address relationships between economic indicators and the stock market.

Commercial and Industrial Credit as a Stock Market Driver

Does commercial and industrial (C&I) credit fuel business growth and thereby drive the stock market? To investigate, we relate changes in credit standards from the Federal Reserve Board’s quarterly Senior Loan Officer Opinion Survey on Bank Lending Practices to future U.S. stock market returns. Presumably, loosening (tightening) of credit standards is good (bad) for stocks. The Federal Reserve publishes survey results a few days after the end of the first month of each quarter (January, April, July and October). Using the “Net Percentage of Domestic Respondents Tightening Standards for C&I Loans” for large and medium businesses from the Senior Loan Officer Opinion Survey on Bank Lending Practices Chart Data for the second quarter of 1990 through the first quarter of 2020 (121 surveys), and contemporaneous S&P 500 Index quarterly returns (aligned to survey months), we find that: Keep Reading

Should the “Anxious Index” Make Investors Anxious?

Since 1990, the Federal Reserve Bank of Philadelphia has conducted a quarterly Survey of Professional Forecasters. The American Statistical Association and the National Bureau of Economic Research conducted the survey from 1968-1989. Among other things, the survey solicits from experts probabilities of U.S. economic recession (negative GDP growth) during each of the next four quarters. The survey report release schedule is mid-quarter. For example, the release date of the fourth quarter 2019 report is November 15, 2019, with forecasts for the four quarters of 2020. The “Anxious Index” is the probability of recession during the next quarter. Are these forecasts meaningful for future U.S. stock market returns? Rather than relate the probability of recession to stock market returns, we instead relate one minus the probability of recession (the probability of good times). If forecasts are accurate, a relatively high (low) forecasted probability of good times should indicate a relatively strong (weak) stock market. Using survey results and quarterly S&P 500 Index levels (on survey release dates as available, and mid-quarter before availability of release dates) from the fourth quarter of 1968 through the fourth quarter of 2019 (205 surveys), we find that:

Keep Reading

Cyclical Consumption as Stock Market Return Predictor

Do investors drive stocks to overvaluation (undervaluation) in good (bad) economic times, such that corresponding expectations for future returns are therefore relatively low (high). In the August 2019 update of their paper entitled “Consumption Fluctuations and Expected Returns”, flagged by a subscriber, Victoria Atanasov, Stig Møller and Richard Priestley introduce the cyclical consumption economic variable and examine its power to predict stock market returns. They hypothesize that in good (bad) economic times:

  1. Marginal utility of present consumption is low (high).
  2. Investors are willing (unwilling) to sacrifice current consumption for investment.
  3. This investment pushes stock prices up (down) and expected returns therefore down (up).

Their principal measure of consumption is quarterly seasonally adjusted real per capita consumption expenditures on non-durables and services from the National Income and Product Accounts (NIPA) Table 7.1 maintained by the U.S. Bureau of Economic Analysis. They extract its cyclical component (detrend) by regressing the logarithm of real per capita consumption on a constant and four lagged values of consumption from about six years prior. They conduct both in-sample and out-of-sample (expanding window regressions, with 2-quarter lag for release delay) tests of the quarterly relationship between cyclical consumption and future U.S. stock market returns. Using the specified consumption data and quarterly returns for the S&P 500 Index and the broad value-weighted U.S. stock market from the first quarter of 1947 through the fourth quarter of 2017, they find that: Keep Reading

CPI-to-PPI Ratio and the Stock Market

In response to “PPI and the Stock Market”, a subscriber hypothesized that increases and decreases in the ratio of the Consumer Price Index (CPI) to the Producer Price Index (PPI) are bullish and bearish for the stock market, respectively. The reasoning for the hypothesis is that CPI reflects aggregate corporate revenue, while PPI reflects aggregate costs. The ratio CPI/PPI therefore relates to aggregate profitability, which should translate to stock market level. To test this hypothesis, we construct U.S. CPI/PPI monthly from non-seasonally adjusted CPI and non-seasonally adjusted PPI. We then relate changes in this ratio to S&P 500 Index returns. Using CPI and PPI values and S&P 500 Index levels during December 1927 through November 2019, we find that: Keep Reading

PPI and the Stock Market

Inflation at the producer level (per the Producer Price Index, PPI) is arguably an advance indicator for inflation downstream at the consumer level (per the Consumer Price Index, CPI). Do investors reliably react to changes in PPI as an indicator of the future wealth discount rate? In other words, is a high (low) producer-level inflation rate bad (good) for the stock market? Using monthly, non-seasonally adjusted PPI from the Bureau of Labor Statistics (BLS) and S&P 500 Index levels during December 1927 through October 2019, we find that: Keep Reading

GDP Growth and Stock Market Returns

The U.S. Bureau of Economic Analysis (BEA) each quarter estimates economic growth via changes in Gross Domestic Product (GDP) and its Personal Consumption Expenditures (PCE), Private Domestic Investment (PDI) and government spending components. BEA releases advance, preliminary and final data about one, two and three months after quarter ends, respectively. Do these estimates of economic growth usefully predict stock market returns? To investigate, we relate economic growth metrics to S&P 500 Index returns. Using quarterly and annual seasonally adjusted nominal GDP data from BEA National Income and Product Accounts Table 1.1.5 as available during January 1929 through September 2019 (nearly 90 years) and contemporaneous levels of the S&P 500 Index, we find that:

Keep Reading

Combining Economic Policy Uncertainty and Stock Market Trend

A subscriber requested, as in “Combine Market Trend and Economic Trend Signals?”, testing of a strategy that combines: (1) U.S. Economic Policy Uncertainty (EPU) Index, as described and tested separately in “Economic Policy Uncertainty and the Stock Market”; and, (2) U.S. stock market trend. We consider two such combinations. The first combines:

  • 10-month simple moving average (SMA10) for the broad U.S. stock market as proxied by the S&P 500 Index. The trend is bullish (bearish) when the index is above (below) its SMA10 at the end of last month.
  • Sign of the change in EPU Index last month. A positive (negative) sign is bearish (bullish).

The second combines:

  • SMA10 for the S&P 500 Index as above.
  • 12-month simple moving average (SMA12) for the EPU Index. The trend is bullish (bearish) when the EPU Index is below (above) its SMA12 at the end of last month.

We consider alternative timing strategies that hold SPDR S&P 500 (SPY) when: the S&P 500 Index SMA10 is bullish; the EPU Index indicator is bullish; either indicator for a combination is bullish; or, both indicators for a combination are bullish. When not in SPY, we use the 3-month U.S. Treasury bill (T-bill) yield as the return on cash, with 0.1% switching frictions. We assume all indicators for a given month can be accurately estimated for signal execution at the market close the same month. We compute average net monthly return, standard deviation of monthly returns, net monthly Sharpe ratio (with monthly T-bill yield as the risk-free rate), net compound annual growth rate (CAGR) and maximum drawdown (MaxDD) as key strategy performance metrics. We calculate the number of switches for each scenario to indicate sensitivities to switching frictions and taxes. Using monthly values for the EPU Index, the S&P 500 Index, SPY and T-bill yield during January 1993 (inception of SPY) through October 2019, we find that:

Keep Reading

Combine Market Trend and Economic Trend Signals?

A subscriber requested review of an analysis concluding that combining economic trend and market trend signals enhances market timing performance. Specifically, per the example in the referenced analysis, we look at combining:

  • The 10-month simple moving average (SMA10) for the broad U.S. stock market. The trend is positive (negative) when the market is above (below) its SMA10.
  • The 12-month simple moving average (SMA12) for the U.S. unemployment rate (UR). The trend is positive (negative) when UR is below (above) its SMA12.

We consider scenarios when the stock market trend is positive, the UR trend is positive, either trend is positive or both trends are positive. We consider two samples: (1) dividend-adjusted SPDR S&P 500 (SPY) since inception at the end of January 1993 (nearly 26 years); and, (2) the S&P 500 Index (SP500) since January 1948 (limited by UR availability), adjusted monthly by estimated dividends from the Shiller dataset, for longer-term robustness tests (nearly 71 years). Per the referenced analysis, we use the seasonally adjusted civilian UR, which comes ultimately from the Bureau of Labor Statistics (BLS). BLS generally releases UR monthly within a few days after the end of the measured month. We make the simplifying assumptions that UR for a given month is available for SMA12 calculation and signal execution at the market close for that same month. When not in the stock market, we assume return on cash from the broker is the yield on 3-month U.S. Treasury bills (T-bill). We focus on gross compound annual growth rate (CAGR), maximum drawdown (MaxDD) and annual Sharpe ratio as key performance metrics. We use the average monthly T-bill yield during a year as the risk-free rate for that year in Sharpe ratio calculations. While we do not apply any stocks-cash switching frictions or tax considerations, we do calculate the number of switches for each scenario. Using specified monthly data through September 2019, we find that: Keep Reading

Economic Policy Uncertainty and the Stock Market

Does quantified uncertainty in government economic policy reliably predict stock market returns? To investigate, we consider the U.S. Economic Policy Uncertainty (EPU) Index, created by Scott Baker, Nicholas Bloom and Steven Davis and constructed from three components:

  1. Coverage of policy-related economic uncertainty by prominent newspapers.
  2. Number of temporary federal tax code provisions set to expire in future years.
  3. Level of disagreement in one-year forecasts among participants in the Federal Reserve Bank of Philadelphia’s Survey of Professional Forecasters for both (a) the consumer price index (CPI) and (b) purchasing of goods and services by federal, state and local governments.

They normalize each component by its own standard deviation prior to 2012 and then compute a weighted average of components, assigning a weight of one half to news coverage and one sixth each to tax code uncertainty, CPI forecast disagreement and government purchasing forecast disagreement. They update the index monthly at the beginning of the following month, potentially revising recent months. Using monthly levels of the EPU Index and the S&P 500 Index during January 1985 through September 2019, we find that: Keep Reading

The Decision Moose Asset Allocation Framework

A reader requested review of the Decision Moose asset allocation framework. Decision Moose is “an automated stock, bond, and gold momentum model developed in 1989. Index Moose uses technical analysis and exchange traded index funds (ETFs) to track global investment flows in the Americas, Europe and Asia, and to generate a market timing signal.” The trading system allocates 100% of funds to the index projected to perform best. The site includes a history of switch recommendations since the end of August 1996, with gross performance. To evaluate Decision Moose, we assume that switches and associated trading returns are as described (out of sample, not backtested) and compare the returns to those for dividend-adjusted SPDR S&P 500 (SPY) over the same intervals. Using Decision Moose signals/performance data and contemporaneous SPY prices during 8/30/96 through 9/30/19 (23+ years), we find that: Keep Reading

Daily Email Updates
Filter Research
  • Research Categories (select one or more)