Objective research to aid investing decisions

Value Investing Strategy (Strategy Overview)

Allocations for December 2024 (Final)
Cash TLT LQD SPY

Momentum Investing Strategy (Strategy Overview)

Allocations for December 2024 (Final)
1st ETF 2nd ETF 3rd ETF

Equity Premium

Governments are largely insulated from market forces. Companies are not. Investments in stocks therefore carry substantial risk in comparison with holdings of government bonds, notes or bills. The marketplace presumably rewards risk with extra return. How much of a return premium should investors in equities expect? These blog entries examine the equity risk premium as a return benchmark for equity investors.

SACEVS Applied to Mutual Funds

“Simple Asset Class ETF Value Strategy” (SACEVS) finds that investors may be able to exploit relative valuation of the term risk premium, the credit (default) risk premium and the equity risk premium via exchange-traded funds (ETF). However, the backtesting period is limited by available histories for ETFs and for series used to estimate risk premiums. To construct a longer test, we make the following substitutions for potential holdings (selected for length of available samples):

To enable estimation of risk premiums over a longer history, we also substitute:

As with ETFs, we consider two alternatives for exploiting premium undervaluation: Best Value, which picks the most undervalued premium; and, Weighted, which weights all undervalued premiums according to degree of undervaluation. Based on the assets considered, the principal benchmark is a monthly rebalanced portfolio of 60% VFINX and 40% VFIIX. Using monthly risk premium calculation data during March 1934 through November 2020 (limited by availability of T-bill data), and monthly dividend-adjusted closing prices for the three asset class mutual funds during June 1980 through November 2020 (40+ years, limited by VFIIX), we find that:

Keep Reading

Fed Model Improvement?

Is there a better way than the Fed model to measure relative attractiveness of equities and bonds. In his October 2020 paper entitled “Towards a Better Fed Model”, Raymond Micaletti examines seven Fed Model alternatives, each comparing a 10-year forward annualized estimate of equity returns to the yield of 10-year constant maturity U.S. Treasury notes (T-note). The seven estimates of future equity returns are based on autocorrelation-corrected quarterly regressions using 10 years of past quarterly data for one of: (1) Aggregate Investor Allocation to Equities (AIAE); (2) Cyclically-Adjusted Price-to-Earnings Ratio (CAPE); (3) Tobin’s Q (QRATIO); (4) Market Capitalization-to-Nominal GDP (MC/GDP); (5) Market Capitalization-to-Adjusted Gross Value Added (MC/AGVANF); (6) Market Capitalization-to-Household and Non-Profit Total Assets (MC/HHNPTA); and, (7) Household and Non-Profit Equity Allocation-to-Nominal GDP (HHNPEQ/GDP). He calculates AIAE as total market value of equities divided by the sum of total market value of equities and total par value of bonds, approximated by adding the liabilities of five categories of borrowers. He then tests for each alternative a tactical asset allocation (TAA) strategy that each month weights equities and bonds based on a modified z-score of the forecasted 10-year equity risk premium (equity return minus T-note yield) computed by subtracting the median and dividing by the standard deviation of actual monthly premiums over the past 10 years. If modified z-score is greater than 1 (less than -1), the strategy is 100% in equities (0% in equities). In between those thresholds, weights are based on linear interpolation. Using quarterly data from the Archival Federal Reserve Economic Database (ALFRED) and Robert Shiller’s data library and daily U.S. equity market returns and U.S. Treasury bond/note roll-adjusted futures returns as available from the end of the fourth quarter of 1951 through the end of the third quarter of 2020, he finds that: Keep Reading

QQQ:IWM for Risk-on and GLD:TLT for Risk-off?

A subscriber asked about a strategy that switches between an equal-weighted portfolio of Invesco QQQ Trust (QQQ) and iShares Russell 2000 ETF (IWM) when the S&P 500 Index is above its 200-day simple moving average (SMA200) and an equal-weighted portfolio of SPDR Gold Shares (GLD) and iShares 20+ Year Treasury Bond ETF (TLT) when below. Also, more generally, is an equal-weighted portfolio of GLD and TLT (GLD:TLT) superior to TLT only for risk-off conditions? To investigate, we (1) backtest the switching strategy and (2) compare performances of GLD:TLT versus TLT when the S&P 500 Index is below its SMA200. We consider both gross and net performance, with the latter accounting for 0.1% portfolio switching frictions 0.001% daily portfolio rebalancing frictions (rebalancing one hundredth of portfolio value). As benchmarks, we consider buying and holding SPDR S&P 500 ETF Trust (SPY) and a strategy that holds SPY (TLT) when the S&P 500 Index is above (below) its SMA200. Using daily S&P 500 Index levels starting February 5, 2004 and daily dividend-adjusted levels of QQQ, IWM, GLD, TLT and SPY starting November 18, 2004 (limited by inception of GLD), all through November 25, 2020, we find that:

Keep Reading

Reversions from Stock Market Valuation Extremes Drive the Value Premium?

Do extreme equity market valuations represent opportunities in value stocks? In their October 2020 paper entitled “Extrapolators at the Gate: Market-wide Misvaluation and the Value Premium”, Stefano Cassella, Zhaojing Chen, Huseyin Gulen and Ralitsa Petkova test the hypothesis that extrapolating (momentum) investors bid up growth stocks in good times and bid down value stocks in bad times, such that the value premium concentrates during reversion from these conditions. Their principal measure of market valuation is average book value-to-market capitalization ratio (B/M) of all firms, excluding financial stocks, utility stocks and stocks priced ice less than $1. When monthly B/M is in the top (bottom) 10% of monthly values for the past 10 years, they deem the market overvalued (undervalued). For robustness, they consider other percentage cutoffs and an alternative metric that quantifies the distance between the current-month distribution of firm B/Ms and the distributions of over the past 10 years based on the Mann-Whitney U test. They further tie findings to investor expectations based on a long times series constructed from Gallup, American Association of Individual Investors and Investor Intelligence surveys of investors. Using monthly returns and accounting data for U.S. common stocks and the specified survey data during January 1962 through December 2018, they find that:

Keep Reading

Are Currency Carry Trade ETFs Working?

Is the currency carry trade, as implemented by exchange-traded funds/notes (ETF/ETN), attractive? To investigate, we consider two currency carry trade ETF/ETNs, one live (with low trading volume) and one dead:

  • PowerShares DB G10 Currency Harvest Fund (DBV) – tracks changes in the Deutsche Bank G10 Currency Future Harvest Index. This index consists of futures contracts on certain G10 currencies with up to 2:1 leverage to exploit the tendency that currencies with relatively high interest rates tend to appreciate relative to currencies with relatively low interest rates, reconstituted annually in November.
  • iPath Optimized Currency Carry (ICITF) – provides exposure to the Barclays Optimized Currency Carry Index, which reflects the total return of a strategy that holds high-yielding G10 currencies financed by borrowing low-yielding G10 currencies. This fund stopped trading July 2018, but an indicative value is still available.

We focus on monthly return statistics, plus compound annual growth rates (CAGR) and maximum drawdowns (MaxDD). For reference (not benchmarking), we compare results to those for SPDR S&P 500 (SPY) and iShares Barclays 20+ Year Treasury Bond (TLT). Using monthly total returns for the two currency carry trade products, SPY and TLT as available through October 2020, we find that: Keep Reading

U.S. Economy and Equity Market Linkage Weakening?

How connected are principal measures of U.S. economic activity and U.S. stock market performance? In their October 2020 paper entitled “Has the Stock Market Become Less Representative of the Economy?”, Frederik Schlingemann and René Stulz model and measure relationships between market capitalizations of U.S. publicly listed firms and their contributions to U.S. employment and Gross Domestic Product (GDP). They estimate employment contribution directly based on firm reports, with modeled adjustments. They measure contribution to GDP based on firm value-add, approximated as operating income before depreciation plus labor costs (with labor costs often modeled). They also try other ways of measuring value-add. Using annual non-farm employment and GDP data for the U.S., annual employment and value-add data for U.S. publicly listed firms and annual stock prices for those firms during 1973 (limited by firm employment data) through 2019, they find that:

Keep Reading

Testing for Trends in Trending for U.S. Stocks and Bonds

“Market Impacts of Growth in Target Date Funds” summarizes research on potential market-wide effects of periodic rebalancing actions of Target Date Funds (TDF), which trade against momentum. One piece of evidence is that monthly autocorrelation of S&P 500 Index returns is significantly negative during 2010-2019 but not during 1986-1995 or 1996-2005. Another is that TDFs accomplish most of quarterly rebalancing within the next quarter. To assess how convincing autocorrelation findings are, we calculate rolling 5-year monthly (60-month) and quarterly (20-calendar quarter) autocorrelations of returns for:

Using monthly total (dividend-reinvested) returns for these three assets through October 2020, we find that: Keep Reading

Market Impacts of Growth in Target Date Funds

Are aggregate periodic stocks-bonds rebalancing actions of Target Date Funds (TDF), which trade against momentum, increasingly affecting U.S. stock market dynamics? In their October 2020 paper entitled “Retail Financial Innovation and Stock Market Dynamics: The Case of Target Date Funds”, flagged by a subscriber, Jonathan Parker, Antoinette Schoar and Yang Sun examine market impacts of Target Date Funds (TDFs), assets of which have grown from less than $8 billion in 2000 to more than $2.3 trillion (of roughly $21 trillion in U.S. mutual funds) in 2019. Using quarterly data on TDF holdings, monthly U.S. stock market and Vanguard Total Bond Market Index Fund (bond market) returns and monthly data for stocks held by and similar to those held by TDFs during the third quarter of 2008 through the fourth quarter of 2018 (excluding three quarters with suspect data), they find that:

Keep Reading

Three High-attention Earnings Announcement Clusters Drive Market?

Does the U.S. stock market respond predictably to simultaneous earnings announcements of attention-grabbing companies? In their September 2020 paper entitled “Famous Firms, Earnings Clusters, and the Stock Market”, Yixin Chen, Randolph Cohen and Zixuan Wang examine U.S. stock market (E-mini S&P 500 futures) responses to earnings announcement clusters (EAC) comprised of high-attention firms. They focus on the three most prominent pre-open (AM) and three most prominent post-close (PM) EACs in each of January, April, July and October, with each announcement weighted for prominence by associated total number of Dow Jones earnings news articles during the prior calendar year. Using earnings announcements and daily prices for S&P 500 components and minute-by-minute E-mini S&P 500 futures returns during 1999-2018, and associated earnings news articles during 1998-2018, they find that: Keep Reading

Stocks for the Long Run Internationally

Are buy-and-hold stock market returns attractive over the long run globally? In their May 2020 paper entitled “Stocks for the Long Run? Evidence from a Broad Sample of Developed Markets”, Aizhan Anarkulova, Scott Cederburg and Michael O’Doherty apply a stationary block bootstrap procedure (retaining some time series features) to generate distributions of 1,000,000 each 1-month to 30-year real returns across global equity markets. They mitigate survivorship and easy data biases via broad coverage of developed countries and inclusion of market interruptions. They focus on a long-term (30-year) investment horizon, with returns accumulated in local currencies. Using monthly total (dividend-reinvested) equity index returns and consumer price indexes for 39 developed countries as available according to certain criteria during January 1841 through December 2019, they find that: Keep Reading

Login
Daily Email Updates
Filter Research
  • Research Categories (select one or more)