Objective research to aid investing decisions
Value Allocations for Feb 2019 (Final)
Cash TLT LQD SPY
Momentum Allocations for Feb 2019 (Final)
1st ETF 2nd ETF 3rd ETF
CXO Advisory

Equity Premium

Governments are largely insulated from market forces. Companies are not. Investments in stocks therefore carry substantial risk in comparison with holdings of government bonds, notes or bills. The marketplace presumably rewards risk with extra return. How much of a return premium should investors in equities expect? These blog entries examine the equity risk premium as a return benchmark for equity investors.

SACEMS-SACEVS Diversification with Mutual Funds

“SACEMS-SACEVS Mutual Diversification” finds that the “Simple Asset Class ETF Value Strategy” (SACEVS) and the “Simple Asset Class ETF Momentum Strategy” (SACEMS) are mutually diversifying. Do the longer samples available from “SACEVS Applied to Mutual Funds” and “SACEMS Applied to Mutual Funds” confirm this finding? To check, we look at the following three equal-weighted (50-50) combinations of the two strategies, rebalanced monthly:

  1. SACEVS Best Value paired with SACEMS Top 1 (aggressive value and aggressive momentum).
  2. SACEVS Best Value paired with SACEMS Equally Weighted (EW) Top 3 (aggressive value and diversified momentum).
  3. SACEVS Weighted paired with SACEMS EW Top 3 (diversified value and diversified momentum).

Using monthly gross returns for SACEVS and SACEMS mutual fund portfolios during September 1997 through June 2017, we find that:

Keep Reading

SACEVS Applied to Mutual Funds

“Simple Asset Class ETF Value Strategy” (SACEVS) finds that investors may be able to exploit relative valuation of the term risk premium, the credit (default) risk premium and the equity risk premium via exchange-traded funds (ETF). However, the backtesting period is limited by available histories for ETFs and for series used to estimate risk premiums. To construct a longer test, we make the following substitutions for potential holdings (selected for length of available samples):

To enable estimation of risk premiums over a longer history, we also substitute:

As with ETFs, we consider two alternative strategies for exploiting premium undervaluation: Best Value, which picks the most undervalued premium; and, Weighted, which weights all undervalued premiums according to degree of undervaluation. Based on the assets considered, the principal benchmark is a monthly rebalanced portfolio of 60% stocks and 40% U.S. Treasuries (60-40 VWUSX-VFIIX). Using monthly risk premium calculation data during March 1934 through June 2017 (limited by availability of T-bill data), and monthly dividend-adjusted closing prices for the three asset class mutual funds during June 1980 through June 2017 (37 years, limited by VFIIX), we find that:

Keep Reading

Stop Treating CAPM as Reality?

Is the Capital Asset Pricing Model (CAPM), which relates the return of an asset to its non-diversifiable risk, called beta, worth learning? In his June 2017 paper (provocatively) entitled “Is It Ethical to Teach That Beta and CAPM Explain Something?”, Pablo Fernandez tackles this question. Based on the body of relevant research, he concludes that:

Keep Reading

Simple Asset Class ETF Value Strategy

Does a simple relative value strategy applied to tradable asset class proxies produce attractive results? To investigate, we test a simple strategy on the following three asset class exchange-traded funds (ETF), plus cash:

3-month Treasury bills (Cash)
iShares 20+ Year Treasury Bond (TLT)
iShares iBoxx $ Investment Grade Corporate Bond (LQD)
SPDR S&P 500 (SPY)

This set of ETFs relates to three factor risk premiums: (1) the difference in yields between Treasury notes/bonds and Treasury bills indicates the term risk premium; (2) the difference in yields between corporate bonds and Treasury notes/bonds indicates the credit (default) risk premium; and, (3) the difference in yields between equities and Treasury notes/bonds indicates the equity risk premium. We consider two alternative strategies for exploiting premium undervaluation: Best Value, which picks the most undervalued premium; and, Weighted, which weights all undervalued premiums according to degree of undervaluation. Based on the assets considered, the principal benchmark is a monthly rebalanced portfolio of 60% stocks and 40% U.S. Treasury notes (60-40 SPY-TLT). Using lagged quarterly S&P 500 earnings, end-of-month S&P 500 Index levels, end-of-month yields for the 3-month Constant Maturity U.S. Treasury bill (T-bill) and the 10-year Constant Maturity U.S. Treasury note (T-note) and day-before-end-of-month yield for Moody’s Seasoned Baa Corporate Bonds during March 1989 through May 2017 (limited by availability of earnings data), and end-of-month dividend-adjusted closing prices for the above three asset class ETFs during July 2002 through May 2017 (179 months, limited by availability of TLT and LQD), we find that: Keep Reading

Zeta Risk and Future Stock Returns

Can investors predict the return of a stock from its relationship with the dispersion of returns across all stocks? In their May 2017 paper entitled “Building Efficient Portfolios Sensitive to Market Volatility”, Wei Liu, James Kolari and Jianhua Huang examine a 2-factor model which predicts the return on a stock based on its sensitivity to (1) the value-weighted stock market return (beta risk) and (2) the standard deviation of value-weighted returns for all stocks (zeta risk). They first each month estimate zeta for each stock via regressions of daily data over the past year. They then rank stocks by zeta into quantile portfolios and calculate next-month equal-weighted returns across these portfolios and various long-short combinations of these portfolios (hedge portfolios) to measure dependence of future returns on zeta. Finally, they generate performance data for aggregate zeta risk portfolios by adding value-weighted market index returns to returns for each of the long-short zeta-sorted portfolios. Using daily and monthly returns for a broad sample of U.S. stocks in the top 90% of market capitalizations for that year, monthly equity market returns and monthly U.S. Treasury bill yields as the risk-free rate during January 1965 through December 2015, they find that: Keep Reading

Stock Index Changes No Longer Meaningful?

Are there opportunities to trade S&P 500 Index additions in the current market environment? In her May 2017 paper entitled “The Diminished Effect of Index Rebalances”, Konstantina Kappou examines returns for S&P 500 Index additions before and after the 2008 financial crisis. She focuses on additions because deletions generally involve confounding information such as restructuring, bankruptcy or merger. Current index management practices are to announce changes after market hours about five days in advance (announcement date – AD) and to implement changes at the specified close (event date – ED). She investigates returns during an event window from 15 trading days before AD through 252 trading days after ED. She calculates abnormal returns as differences between returns for added stocks and contemporaneous market returns. She considers 276 index additions during January 2002 through November 2013, with October 2008 separately pre-crisis from post-crisis. She excludes 48 of the additions due to lack of data or confounding information. Using daily returns for the remaining 228 S&P 500 Index additions during the specified sample period, she finds that: Keep Reading

Combining Equity Sector and Factor Investing

Are equity sector and factor investing complementary? In their May 2017 paper entitled “Factors vs. Sectors in Asset Allocation: Stronger Together?”, Marie Briere and Ariane Szafarz compare efficient sector investing (diversifying economic risks) and efficient factor investing (diversifying across risk factors) for U.S. stocks, and then assess advantages of combining the two approaches. They first construct two efficient frontiers (sets of portfolios with the highest expected returns across the range of volatilities), one from 10 sectors and the other from 10 factors. Their sector set consists of long-only portfolios covering (1) non-durable consumer goods, (2) durable consumer goods, (3) manufacturing, (4) energy, (5) technology, (6) telecommunications, (7) shops, (8) health care, (9) utilities and (10) other. Their factor set consists of the long and short portfolios separately for (1) size, (2) book-to-market, (3) momentum, (4) profitability and (5) investment. They consider six scenarios consisting of three samples (full period, crisis subperiods and non-crisis subperiods) for long-only and long-short efficient portfolios. They define crises by combining NBER recession dates and Forbes Magazine bear market dates. Using monthly returns for sectors and factors as specified from Kenneth French’s data library and the broad market, along with yields for 1-month U.S. Treasury bills as the risk-free rate, during July 1963 through December 2016, they find that: Keep Reading

Smart Life Cycle Investing?

Can investors improve retirement glide paths via judicious use of smart beta funds? In their March 2017 paper entitled “Life Cycle Investing and Smart Beta Strategies”, Bill Carson, Sara Shores and Nicholas Nefouse augment a conventional equities-bonds life cycle investing glide path with smart beta strategies. They use a conventional glide path, which gradually decreases the allocation to equities with age to a constant after retirement, to determine target risk levels over the life cycle. When the investor is young, they tilt equities toward the MSCI USA Diversified Multiple-Factor (DMF) Index to boost returns via value, size momentum and quality beta exposures. As the investor approaches retirement, they shift equities to the MSCI USA Minimum Volatility Index, designed to match the market return at lower risk. For bonds, they use the Barclays Constant Weights Index, which has greater diversification and higher Sharpe ratio than a conventional market capitalization-based bond index. They incorporate the specified smart beta indexes into the glide path via a procedure that maximizes Sharpe ratio while matching the risk of the conventional glide path. Specifically, they: (1) deviate no more than 3% from conventional glide path risk; (2) constrain smart beta equities beta relative to the Russell 1000 Index and the MSCI World Index ex U.S. to within 5% of the benchmark equities beta; (3) constrain smart beta bond index duration to within 0.05 years of the benchmark bonds duration; and, (4) require at least 1% allocation to bonds for all target date portfolios. Using monthly data for conventional capitalization-weighted U.S. equity and bond indexes and for the specified smart beta indexes during 2007 through 2016, they find that: Keep Reading

Expert Estimates of 2017 Country Equity Risk Premiums and Risk-free Rates

What are current estimates of equity risk premiums (ERP) and risk-free rates around the world? In their April 2017 paper entitled “Discount Rate (Risk-Free Rate and Market Risk Premium) Used for 41 Countries in 2017: A Survey”, Pablo Fernandez, Vitaly Pershin and Isabel Acin summarize results of a March 2017 email survey of international finance/economic professors, analysts and company managers “about the Market Risk Premium (MRP) or Equity Premium used to calculate the required return to equity in different countries.” Based on 4,368 specific and credible responses spanning 41 countries with at least 25 such responses, they find that: Keep Reading

Predicting Anomaly Premiums Across Asset Classes

Are anomaly premiums (expected winners minus losers among assets within a class, based on some asset characteristic) more or less predictable than broad market returns? In their April 2017 paper entitled “Predicting Relative Returns”, Valentin Haddad, Serhiy Kozak and Shrihari Santosh apply principal component analysis to assess the predictability of premiums for published asset pricing anomalies spanning stocks, U.S. Treasuries and currencies. For tractability, they simplify asset classes by forming portfolios of assets within them, as follows:

  • For stocks, they consider the long and short legs of portfolios reformed monthly into tenths (deciles) based on each of the characteristics associated with 26 published stock return anomalies (monthly data for 1973 through 2015).
  • They sort zero-coupon U.S. Treasuries by maturity from one to 15 years to assess term premiums (yield data for 1985 through 2014).
  • They sort individual exchange rates into five portfolios reformed daily based on interest rate differentials with the U.S. to assess the carry trade premium (daily data as available for December 1975 through December 2016).

Using the specified data, they find that: Keep Reading

Daily Email Updates
Login
Research Categories
Recent Research
Popular Posts
Popular Subscriber-Only Posts