Objective research to aid investing decisions

Value Investing Strategy (Strategy Overview)

Allocations for December 2020 (Preliminary)

Momentum Investing Strategy (Strategy Overview)

Allocations for December 2020 (Preliminary)
1st ETF 2nd ETF 3rd ETF

Equity Premium

Governments are largely insulated from market forces. Companies are not. Investments in stocks therefore carry substantial risk in comparison with holdings of government bonds, notes or bills. The marketplace presumably rewards risk with extra return. How much of a return premium should investors in equities expect? These blog entries examine the equity risk premium as a return benchmark for equity investors.

Effects of Execution Delay on SACEVS

How does execution delay affect the performance of the Best Value and Weighted versions of the “Simple Asset Class ETF Value Strategy” (SACEVS)? These strategies each month allocate funds to the following asset class exchange-traded funds (ETF) according to valuations of term, credit and equity risk premiums, or to cash if no premiums are undervalued:

3-month Treasury bills (Cash)
iShares 20+ Year Treasury Bond (TLT)
iShares iBoxx $ Investment Grade Corporate Bond (LQD)
SPDR S&P 500 (SPY)

To investigate, we compare 22 variations of each strategy with execution days ranging from end-of-month (EOM) per the baseline strategy to 21 trading days after EOM (EOM+21). For example, an EOM+5 variation computes allocations based on EOM but delays execution until the close five trading days after EOM. We include a benchmark that each month allocates 60% to SPY and 40% to TLT (60-40) to see whether variations are unique to SACEVS. We focus on gross compound annual growth rate (CAGR), maximum drawdown (MaxDD) and annual Sharpe ratio as key performance statistics. Using daily dividend-adjusted closes for the above ETFs from the end of July 2002 through January 2020, we find that:

Keep Reading

Verification Tests of the Smart Money Indicator

A subscriber requested verification of findings in “Smart Money Indicator for Stocks vs. Bonds”, where the Smart Money Indicator (SMI) is a complicated variable that exploits differences in futures and options positions in the S&P 500 Index, U.S. Treasury bonds and 10-year U.S. Treasury notes between institutional investors (smart money) and retail investors (dumb money). To verify, we simplify somewhat the approach for calculating and testing SMI, as follows:

  • Use a “modern” sample of weekly Traders in Financial Futures; Futures-and-Options Combined Reports from CFTC, starting in mid-June 2006 and extending into early February 2020.
  • For each asset, take Asset Manager/Institutional positions as the smart money and Non-reporting positions as the dumb money.
  • For each asset, calculate weekly net positions of smart money and dumb money as longs minus shorts. 
  • For each asset, use a 52-week lookback interval to calculate weekly z-scores of smart and dumb money net positions (how unusual current net positions are). This interval should dampen any seasonality.
  • For each asset, calculate weekly relative sentiment as the difference between smart money and dumb money z-scores.
  • For each asset, use a 13-week lookback interval to calculate recent maximum/minimum relative sentiments between smart money and dumb money for all three inputs. The original study reports that short intervals work better than long ones, and 13 weeks is a quarterly earnings interval.
  • Use a 13-week lookback interval to calculate final SMI as described in “Smart Money Indicator for Stocks vs. Bonds”.

We perform three kinds of tests to verify original study findings, using dividend-adjusted SPDR S&P 500 (SPY) as a proxy for a stock market total return index, 3-month Treasury bill (T-bill) yield as return on cash (Cash) and dividend-adjusted iShares 20+ Year Treasury Bond (TLT) as a proxy for government bonds. We calculate asset returns based on Friday closes (or Monday closes when Friday is a holiday) because source report releases are normally the Friday after the Tuesday report date, just before the stock market close. 

  1. Calculate full sample correlations between weekly final SMI and both SPY and TLT total returns for lags of 0 to 13 weeks.
  2. Calculate over the full sample average weekly SPY and TLT total returns by ranked tenth (decile) of SMI for each of the next three weeks after SMI ranking.
  3. Test a market timing strategy that is in SPY (cash or TLT) when SMI is positive (zero or negative), with 0.1% (0.2%) switching frictions when the alternative asset is cash (TLT). We try execution at the same Friday close as report release date and for lags of one week (as in the original study) and two weeks. We focus on compound annual growth rate (CAGR) and maximum drawdown (MaxDD) as key performance metrics. Buying and holding SPY is the benchmark.

Using inputs as specified above for 6/16/06 through 2/7/20, we find that: Keep Reading

Simple Sector ETF Momentum Strategy Update/Extension

“Simple Sector ETF Momentum Strategy” investigates performances of simple momentum trading strategies for the following nine sector exchange-traded funds (ETF) executed with Standard & Poor’s Depository Receipts (SPDR):

Materials Select Sector SPDR (XLB)
Energy Select Sector SPDR (XLE)
Financial Select Sector SPDR (XLF)
Industrial Select Sector SPDR (XLI)
Technology Select Sector SPDR (XLK)
Consumer Staples Select Sector SPDR (XLP)
Utilities Select Sector SPDR (XLU)
Health Care Select Sector SPDR (XLV)
Consumer Discretionary Select SPDR (XLY)

Here, we update the principal strategy and extend it by adding equally weighted combinations of the top two and top three sector ETFs, along with corresponding robustness tests and benchmarks. We present findings in formats similar to those used for the Simple Asset Class ETF Momentum Strategy and the Simple Asset Class ETF Value Strategy. Using monthly dividend-adjusted closing prices for the sector ETFs and SPDR S&P 500 (SPY) and 3-month U.S. Treasury bill (T-bill) yields since December 1998, and S&P 500 Index levels since September 1998, all through December 2019, we find that: Keep Reading

Seasonal, Technical and Fundamental S&P 500 Index Timing Tests

Are there any seasonal, technical or fundamental strategies that reliably time the U.S. stock market as proxied by the S&P 500 Total Return Index? In the February 2018 version of his paper entitled “Investing In The S&P 500 Index: Can Anything Beat the Buy-And-Hold Strategy?”, Hubert Dichtl compares excess returns (relative to the U.S. Treasury bill [T-bill] yield) and Sharpe ratios for investment strategies that time the S&P 500 Index monthly based on each of:

  • 4,096 seasonality strategies.
  • 24 technical strategies (10 slow-fast moving average crossover rules; 8 intrinsic [time series or absolute] momentum rules; and, 6 on-balance volume rules).
  • 18 fundamental variable strategies based on a rolling 180-month regression, with 1950-1965 used to generate initial predictions.

In all cases, when not in stocks, the strategies hold T-bills as a proxy for cash. His main out-of-sample test period is 1966-2014, with emphasis on a “crisis” subsample of 2000-2014. He includes extended tests on seasonality and some technical strategies using 1931-2014. He assumes constant stock index-cash switching frictions of 0.25%. He addresses data snooping bias from testing multiple strategies on the same sample by applying Hansen’s test for superior predictive ability. Using monthly S&P 500 Index levels/total returns and U.S. Treasury bill yields since 1931 and values of fundamental variables since January 1950, all through December 2014, he finds that:

Keep Reading

Non-linear Model of Asset Returns

Is the conventional linear factor model comprised of a few presumably independent predictors the best, or even a good, way to model differences in returns across assets? In the December 2019 update of their paper entitled “The Cross-Section of Returns: A Non-Parametric Approach”, Enoch Cheng and Clemens Struck compare predictive powers of conventional linear models and less presumptive tree-based methods. The latter accommodate multivariate interactions and non-linearities across all predictors. They consider two linear and two tree-based methods with parameter settings commonly used in other studies:

1a. Logit – a linear regression model including all factors.

1b. LASSO – a linear regression model with a shrinkage term that sets betas to zero for (discards) predictors that do not add information, and thereby acts as a variable selection tool.

2a. Bagged regression trees – bootstrapping to create different samples from the original data, growing an individual tree on each and combining predictions of individual trees by a simple majority vote.

2b. Boosted regression trees – a modification to bagging whereby bagging and growing trees takes place sequentially with bootstrapping subsequently adjusted to improve prediction accuracy for the forest with each new tree.

Specifically, they measure relationships between 59 predictor variables and next-month (4-week) return for a universe of 28 liquid commodity futures series. This asset universe has low trading costs and avoids survivorship bias. They use nearest, second and third month contracts, the latter two only to construct signals and the first for trading. They generally roll contracts 10 days before the last trade date. The 59 predictors include time series (intrinsic or absolute) momentum variants, moving average variants, volatility variants, value metrics, miscellaneous variables, dummies for calendar months and dummies for each of the 28 commodity contract series. They consider long-short portfolios based on top half-bottom half, top five-bottom five and top three-bottom three assets in terms of expected returns. Their break point for in-sample and out-of-sample testing is the end of 2013. Using monthly data for the 28 commodity contract series and the 59 predictors during January 1987 through October 2019, they find that: Keep Reading

Optimizing the Combination of Economic Growth and Price Trends

Does combining an economic growth variable trend with an asset price trend improve the power to predict stock market return? What is the best way to use such a combination signal? In his December 2019 paper entitled “Growth-Trend Timing and 60-40 Variations: Lethargic Asset Allocation (LAA)”, Wouter Keller investigates variations in a basic Growth-Trend timing strategy (GT) that is bullish and holds the broad U.S. stock market unless both: (1) the U.S. unemployment rate is below its 12-month simple moving average (SMA12); and, (2) the S&P 500 Index is below its SMA10. When both SMAs trend downward, GT is bearish and holds cash. Specifically, he looks at:

  • Basic GT versus a traditional 60-40 stocks-bonds portfolio, rebalanced monthly, with stocks proxied by actual/modeled SPY and bonds/cash proxied by actual/modeled IEF.
  • Improving basic GT, especially maximum drawdown (MaxDD), by replacing assets with equal-weighted, monthly rebalanced portfolios with various component selections. His ultimate portfolio is the Lethargic Asset Allocation (LAA), optimized in-sample based on Ulcer Performance Index (UPI) during February 1949 through June 1981 (mostly rising interest rates) and tested out-of-sample during July 1981 through October 2019 (mostly falling interest rates).

He considers two additional benchmarks: GT applied to the Permanent portfolio (25% allocations to each of SPY, GLD, BIL and TLT) and GT applied to the Golden Butterfly portfolio (20% to each of SPY, IWN, GLD, SHY and TLT). He applies 0.1% one-way trading frictions in all tests. Using monthly unemployment rate since January 1948 and actual/modeled monthly returns for ETFs as specified since February 1949, all through October 2019, he finds that: Keep Reading

Modeling the Equity Factor Zoo to Near Death

Which equity factors truly explain stock returns, and what group of them constitute the best model? In their November 2019 paper entitled “Bayesian Solutions for the Factor Zoo: We Just Ran Two Quadrillion Models”, Svetlana Bryzgalova, Jiantao Huang and Christian Julliard present a Bayesian estimation and model selection method for pricing of stock portfolios that allows simultaneous examination of the entire zoo of equity factors. They apply the method to 51 factors described in past papers, yielding a total of 2.25 quadrillion factor models of U.S. stock returns. They test abilities of these factors and models to price 25 portfolios of stocks sorted by market capitalization (size) and book-to-market ratio (value) and 30 industry portfolios. Using returns for factors available monthly during January 1970 through December 2017 and for factors available only quarterly during first quarter 1952 through third quarter 2017, and contemporaneous test portfolio returns, they find that: Keep Reading

Factor Portfolio Longs vs. Shorts

Do both the long and short sides of portfolios used to quantify widely accepted equity factors benefit investors? In their November 2019 paper entitled “When Equity Factors Drop Their Shorts”, David Blitz, Guido Baltussen and Pim van Vliet decompose and analyze gross performances of long and short sides of U.S. value, momentum, profitability, investment and low-volatility equity factor portfolios. The employ 2×3 portfolios, segmenting first by market capitalization into halves and then by selected factor variables into thirds. The extreme third with the higher (lower) expected return constitutes the long (short) side of a factor portfolio. When looking at just the long (short) side of factor portfolios, they hedge market beta via a short (long) position in liquid derivatives on a broad market index. Using monthly returns for the specified 2×3 portfolios during July 1963 through December 2018, they find that:

Keep Reading

Smart Money Indicator for Stocks vs. Bonds

Do differences in expectations between institutional and individual investors in stocks and bonds, as quantified in weekly legacy Commitments of Traders (COT) reports, offer exploitable timing signals? In the February 2019 revision of his paper entitled “Want Smart Beta? Follow the Smart Money: Market and Factor Timing Using Relative Sentiment”, flagged by a subscriber, Raymond Micaletti tests a U.S. stock market-U.S. bond market timing strategy based on an indicator derived from aggregate equity and Treasuries positions of institutional investors (COT Commercials) relative to individual investors (COT Non-reportables). This Smart Money Indicator (SMI) has three relative sentiment components, each quantified weekly based on differences in z-scores between standalone institutional and individual net COT positions, with z-scores calculated over a specified lookback interval:

  1. Maximum weekly relative sentiment for the S&P 500 Index over a second specified lookback interval.
  2. Negative weekly minimum relative sentiment in the 30-Year U.S. Treasury bond over this second lookback interval.
  3. Difference between weekly maximum relative sentiments in the 10-Year U.S. Treasury note and 30-year U.S. Treasury bond over this second lookback interval.

Final SMI is the sum of these components minus median SMI over the second specified lookback interval. He considers z-score calculation lookback intervals of 39, 52, 65, 78, 91 and 104 weeks and maximum/minimum relative sentiment lookback intervals of one to 13 weeks (78 lookback interval combinations). For baseline results, he splices futures-only COT data through March 14, 1995 with futures-and-options COT starting March 21, 1995. To account for changing COT reporting delays, he imposes a baseline one-week lag for using COT data in predictions. He focuses on the ability of SMI to predict the market factor, but also looks at its ability to enhance: (1) intrinsic (time series or absolute) market factor momentum; and, (2) returns for size, value, momentum, profitability, investment, long-term reversion, short-term reversal, low volatility and quality equity factors. Finally, he compares to several benchmarks the performance of an implementable strategy that invests in the broad U.S. stock market (U.S. Aggregate Bond Total Return Index) when a group of SMI substrategies “vote” positively (negatively). Using weekly legacy COT reports and daily returns for the specified factors/indexes during October 1992 through December 2017, he finds that: Keep Reading

Best Factor Model of U.S. Stock Returns?

Which equity factors from among those included in the most widely accepted factor models are really important? In their October 2019 paper entitled “Winners from Winners: A Tale of Risk Factors”, Siddhartha Chib, Lingxiao Zhao, Dashan Huang and Guofu Zhou examine what set of equity factors from among the 12 used in four models with wide acceptance best explain behaviors of U.S. stocks. Their starting point is therefore the following market, fundamental and behavioral factors:

They compare 4,095 subsets (models) of these 12 factors models based on: Bayesian posterior probability; out-of-sample return forecasting performance; gross Sharpe ratios of the optimal mean variance factor portfolio; and, ability to explain various stock return anomalies. Using monthly data for the selected factors during January 1974 through December 2018, with the first 10 (last 12) months reserved for Bayesian prior training (out-of-sample testing), they find that: Keep Reading

Daily Email Updates
Filter Research
  • Research Categories (select one or more)