Objective research to aid investing decisions
Value Allocations for Feb 2019 (Final)
Cash TLT LQD SPY
Momentum Allocations for Feb 2019 (Final)
1st ETF 2nd ETF 3rd ETF
CXO Advisory

Equity Premium

Governments are largely insulated from market forces. Companies are not. Investments in stocks therefore carry substantial risk in comparison with holdings of government bonds, notes or bills. The marketplace presumably rewards risk with extra return. How much of a return premium should investors in equities expect? These blog entries examine the equity risk premium as a return benchmark for equity investors.

Stock Liquidity Premium Update

Two major theories of asset pricing include: one based on asset risk (the market compensates inherent riskiness); and, another based on asset illiquidity (the market compensates illiquidity). In his July 2018 paper entitled “Illiquidity and Stock Returns: A Revisit”, Yakov Amihud presents cross-sectional and time series analyses of illiquidity and U.S. stock returns that extend the 1964-1997 sample period of his seminal illiquidity research. Specifically, he:

  • Each year, sorts stocks by volatility (standard deviation of daily returns for the 12 months ending November) into three groups.
  • Each year, sorts stocks within each volatility group into five illiquidity sub-groups, with illiquidity specified as the 12-month average of absolute daily return divided by same-day dollar volume traded over the same 12 months.
  • Each month during the subsequent January through December, calculates the monthly return of each of the resulting 15 portfolios, weighting stocks based on their market capitalization weights at the end of the prior month.
  • Each month, calculates an illiquid-minus-liquid factor (IML) as average return of the most illiquid portfolios across volatility groups minus average return of the least illiquid portfolios across volatility groups.

This process controls for interaction between volatility and illiquidity. He segments findings into replicating Period I (1964-1997) and new Period II (1998-2017). He screens source stocks by requiring for each year: price between $5 and $1000; over 200 days of valid returns and volumes; and, not in the top 1% of illiquidities (outliers). Using data for NYSE/AMEX common stocks that meet these criteria during 1964 through 2017, he finds that: Keep Reading

Assessment of Smart Beta Investing

What are the implications of rapid global adoption of factor (smart beta) investing in single-factor, multi-factor and dynamic multi-factor strategies, most notably via equity exchange-traded funds (ETF). In their September 2018 paper entitled “Smart-Beta Herding and Its Economic Risks: Riding the Dragon?”, Eduard Krkoska and Klaus Schenk-Hoppé summarize the current state of smart beta investing, providing a concise overview of academic research, investment community reports and financial media coverage. They address evidence and implications of investor herding into smart beta vehicles. Based on the body of research and experience, they conclude that: Keep Reading

Are Currency Carry Trade ETFs Working?

Is the currency carry trade, as implemented by exchange-traded funds/notes (ETF/ETN), attractive? To investigate, we consider two currency carry trade ETF/ETNs, neither of which has appreciable trading volume:

  • PowerShares DB G10 Currency Harvest Fund (DBV) – tracks changes in the Deutsche Bank G10 Currency Future Harvest Index. This index consists of futures contracts on certain G10 currencies with up to 2:1 leverage to exploit the tendency that currencies with relatively high interest rates tend to appreciate relative to currencies with relatively low interest rates, reconstituted annually in November.
  • iPath Optimized Currency Carry (ICITF) – provides exposure to the Barclays Optimized Currency Carry Index, which reflects the total return of a strategy that holds high-yielding G10 currencies financed by borrowing low-yielding G10 currencies. These ETNs are unsecured debt obligations of the issuer and have no principal protection.

Because trading in these products is thin, we focus on monthly return statistics, plus compound annual growth rates (CAGR) and maximum drawdowns (MaxDD). For reference (not benchmarking), we compare results to those for SPDR S&P 500 (SPY) and iShares Barclays 20+ Year Treasury Bond (TLT). Using monthly total returns for the two currency carry trade products, SPY and TLT as available through September 2018, we find that: Keep Reading

Are Equity Multifactor ETFs Working?

Are equity multifactor strategies, as implemented by exchange-traded funds (ETF), attractive? To investigate, we consider seven ETFs, all currently available (in order of decreasing assets):

  • Goldman Sachs ActiveBeta U.S. Large Cap Equity (GSLC) – holds large U.S. stocks based on good value, strong momentum, high quality and low volatility.
  • iShares Edge MSCI Multifactor USA (LRGF) – holds large and mid-cap U.S. stocks with focus on quality, value, size and momentum, while maintaining a level of risk similar to that of the market.
  • iShares Edge MSCI Multifactor International (INTF) – holds global developed market ex U.S. large and mid-cap stocks based on quality, value, size and momentum, while maintaining a level of risk similar to that of the market.
  • JPMorgan Diversified Return U.S. Equity (JPUS) – holds U.S. stocks based on value, quality and momentum via a risk-weighting process that lowers exposure to historically volatile sectors and stocks.
  • John Hancock Multifactor Large Cap (JHML) – holds large U.S. stocks based on smaller capitalization, lower relative price and higher profitability, which academic research links to higher expected returns.
  • John Hancock Multifactor Mid Cap (JHMM) – holds mid-cap U.S. stocks based on smaller capitalization, lower relative price and higher profitability, which academic research links to higher expected returns.
  • Xtrackers Russell 1000 Comprehensive Factor (DEUS) – seeks to track, before fees and expenses, the Russell 1000 Comprehensive Factor Index, which seeks exposure to quality, value, momentum, low volatility and size factors.

Because available sample periods are very short, we focus on daily return statistics, along with cumulative returns. We use four benchmarks according to fund descriptions: SPDR S&P 500 (SPY), iShares MSCI ACWI ex US (ACWX), SPDR S&P MidCap 400 (MDY) and iShares Russell 1000 (IWB). Using daily returns for the seven equity multifactor ETFs and benchmarks as available through September 2018, we find that: Keep Reading

Evolution of Quantitative Stock Investing

Quantitative investing involves disciplined rule-based approaches to help investors structure optimal portfolios that balance return and risk. How has such investing evolved? In their June 2018 paper entitled “The Current State of Quantitative Equity Investing”, Ying Becker and Marc Reinganum summarize key developments in the history of quantitative equity investing. Based on the body of research, they conclude that: Keep Reading

Credit Spread as an Asset Return Predictor

A reader commented and asked: “A wide credit spread (the difference in yields between Treasury notes or Treasury bonds and investment grade or junk corporate bonds) indicates fear of bankruptcies or other bad events. A narrow credit spread indicates high expectations for the economy and corporate world. Does the credit spread anticipate stock market behavior?” To investigate, we define the U.S. credit spread as the difference in yields between Moody’s seasoned Baa corporate bonds and 10-year Treasury notes (T-note), which are average daily yields for these instruments by calendar month (a smoothed measurement). We use the S&P 500 Index (SP500) as a proxy for the U.S. stock market. We extend the investigation to bond market behavior via:

  • Vanguard Long-Term Treasury Investors Fund (VUSTX)
  • Vanguard Long-Term Investment-Grade Investors Fund (VWESX)
  • Vanguard High-Yield Corporate Investors Fund (VWEHX)

Using monthly Baa bond yields, T-note yields and SP500 closes starting April 1953 and monthly dividend-adjusted closes of VUSTX, VWESX and VWEHX starting May 1986, January 1980 and January 1980, respectively, all through August 2018, we find that: Keep Reading

Are U.S. Equity Momentum ETFs Working?

Are U.S. stock and sector momentum strategies, as implemented by exchange-traded funds (ETF), attractive? To investigate, we consider five momentum-oriented U.S. equity ETFs with assets over $100 million, all currently available (in order of decreasing assets):

  • iShares Edge MSCI USA Momentum Factor (MTUM) – holds U.S. large-capitalization and mid-capitalization stocks with relatively high momentum.
  • First Trust Dorsey Wright Focus 5 (FV) – holds five equally weighted sector and industry ETFs selected via a proprietary relative strength methodology, reformed twice a month.
  • PowerShares DWA Momentum Portfolio (PDP) – invests at least 90% of assets in approximately 100 U.S. common stocks per a proprietary methodology designed to identify powerful relative strength characteristics, reformed quarterly.
  • SPDR Russell 1000 Momentum Focus (ONEO) – tracks the Russell 1000 Momentum Focused Factor Index, picking U.S. stocks that have recently outperformed.
  • First Trust Dorsey Wright Dynamic Focus 5 ETF (FVC) – similar to FV but with added risk management via an increasing allocation to cash equivalents when relative strengths of more than one-third of the universe diminish relative to a cash index, reformed twice a month.

Because some sample periods are very short, we focus on daily return statistics, but also consider cumulative returns and maximum drawdowns (MaxDD). We use two benchmark ETFs, iShares Russell 1000 (IWB) and iShares Russell 3000 (IWV), according to momentum fund descriptions. Using daily returns for the five momentum funds and the two benchmarks as available through mid-September 2018, we find that: Keep Reading

Damodaran Equity Premium Estimates and Future Stock Market Returns

A subscriber asked whether the annual equity risk premium estimates of Aswath Damodaran predict stock market returns one year ahead. The cited source offers two 58-year series of annual estimates of the U.S. equity risk premium implied by an S&P 500:

  1.  Dividend Discount Model (DDM).
  2.  Free Cash Flow to Equity (FCFE).

We calculate S&P 500 Index total annual returns from this source as capital gains plus dividends and then relate this total return series to each of these two implied equity risk premium series. Using the specified data during 1960 through 2017, we find that: Keep Reading

Add REITs to SACEVS?

What happens if we extend the “Simple Asset Class ETF Value Strategy” (SACEVS) with a real estate risk premium, derived from the yield on equity Real Estate Investment Trusts (REIT), represented by the FTSE NAREIT Equity REITs Index? To investigate, we apply the SACEVS methodology to the following asset class exchange-traded funds (ETF), plus cash:

3-month Treasury bills (Cash)
iShares 20+ Year Treasury Bond (TLT)
iShares iBoxx $ Investment Grade Corporate Bond (LQD)
SPDR Dow Jones REIT (RWR) through September 2004 dovetailed with Vanguard REIT ETF (VNQ) thereafter
SPDR S&P 500 (SPY)

This set of ETFs relates to four risk premiums, as specified below: (1) term; (2) credit (default); (3) real estate; and, (4) equity. We focus on the effects of adding the real estate risk premium on Compound annual growth rates (CAGR) and Maximum drawdowns (MaxDD) of the Best Value (picking the most undervalued premium) and Weighted (weighting all undervalued premiums according to degree of undervaluation) versions of SACEVS. Using lagged quarterly S&P 500 earnings, monthly S&P 500 Index levels and monthly yields for 3-month U.S. Treasury bill (T-bill), the 10-year Constant Maturity U.S. Treasury note (T-note), Moody’s Seasoned Baa Corporate Bonds and FTSE NAREIT Equity REITs Index during March 1989 through August 2018 (limited by availability of earnings data), and monthly dividend-adjusted closing prices for the above asset class ETFs during July 2002 through August 2018 (194 months, limited by availability of TLT and LQD), we find that: Keep Reading

Stock Market Timing Using P/E SMA Signals

A subscriber proposed four alternative ways of timing the U.S. stock market based on simple moving averages (SMA) of the market price-earnings ratio (P/E), as follows:

  1. 5-Year Binary – hold stocks (cash) when P/E is below (above) its 5-year SMA.
  2. 10-Year Binary – hold stocks (cash) when P/E is below (above) its 10-year SMA.
  3. 15-Year Binary – hold stocks (cash) when P/E is below (above) its 15-year SMA.
  4. 5-Year Scaled – hold 100% stocks (cash) when P/E is five or more units below (above) its 5-year SMA. Between these levels, scale allocations linearly.

To obtain a sample long enough for testing these rules, we use the monthly U.S. data of Robert Shiller. While offering a very long history, this source has the disadvantage of blurring monthly data as averages of daily values. How well do these alternative timing strategies work for this dataset? Using monthly data for the S&P Composite Index, annual dividends, annual P/E and 10-year government bond yield since January 1871 and monthly 3-month U.S. Treasury bill (T-bill) yield as return on cash since January 1934, all through August 2018, we find that: Keep Reading

Daily Email Updates
Login
Research Categories
Recent Research
Popular Posts
Popular Subscriber-Only Posts