Objective research to aid investing decisions

Value Investing Strategy (Strategy Overview)

Allocations for September 2024 (Final)
Cash TLT LQD SPY

Momentum Investing Strategy (Strategy Overview)

Allocations for September 2024 (Final)
1st ETF 2nd ETF 3rd ETF

Technical Trading

Does technical trading work, or not? Rationalists dismiss it; behavioralists investigate it. Is there any verdict? These blog entries relate to technical trading.

Review of IntelligentValue’s Retracement-Value Portfolio

A reader poses the following question: “Have you looked at IntelligentValue? They claim pretty impressive results, apparently certified by FinancialContent. Their Retracement-Value portfolio, particularly, shows impressive results [“508% in its 1st 18.5 months!”]. Are you able to evaluate this newsletter service?” Based on the information provided on IntelligentValue’s web site, especially the closed trade analysis for the [now removed] Retracement-Value portfolio (171 round-trip trades, apparently from portfolio inception on 5/16/06 through 1/9/08, with a starting portfolio value of $10,000), we conclude that: Keep Reading

Review of Mark Leibovit’s VRTrader.com “Track Record”

Several readers have requested that we evaluate the expertise of Mark Leibovit, Chief Market Strategist for VRTrader.com, According to VRTrader.com: “His technical expertise is in volume analysis, providing short-term, high performance stock trades and market timing…” Based on the information provided at VRTrader.com, especially the “Track Record” encompassing 3,388 round-trip trades during 2001-2007, we conclude that: Keep Reading

Befriend the Trend Trading’s Trend Trades

A reader asked: “Please evaluate the performances of the The Trend Trade Letter and The Cheap Stocks Letter offered by Befriend the Trend Trading.” We focus here on the The Trend Trade Letter, which has a much larger sample of historical trades than its sibling. Both the company and newsletter names imply a momentum-centric trading approach. The newsletter focuses on fairly continuous short-term technical trading (long and short) of liquid, volatile stocks with no more than ten positions at a time. Based on the information provided on the Befriend the Trend Trading web site, especially the monthly closed trade lists for The Trend Trade Letter (over 1,300 round-trip trades, from inception on 10/7/02 through 12/11/07), we conclude that: Keep Reading

Does a Long-Term Moving Average Indicator Predict Big Days?

A reader offered the following observation and question: “For many market observers, the 200-day moving average is the point of being in or out of the market. Does being above or below the 200-day moving average make a material difference with respect to missing the the best/worst 10, 20 or 100 days?” To check, we return to the data set for our “Trend Implications of Big Up and Down Days”, which identifies the 40 biggest up days (daily return > 3.50%) and the 40 biggest down days (daily return < -3.09%) for the S&P 500 index during January 1950 through November 2007. Calculating the 200-day moving average (MA) at the close for each day just before these 80 biggest up/down days, we find that: Keep Reading

The “Double 9-to-1 Up Day” Signal

Mark Hulbert’s 9/5/07 column addresses the 9-to-1 up day event, a bullish technical signal publicized by Martin Zweig in a 1986 book. It occurs when at least 90% of daily NYSE volume belongs to advancing issues. When the signal occurs in multiples over short periods, as it has recently, prospects for equities are “quite bullish” according to Mark Hulbert. A reader comments and inquires:

“A statistician [David Aronson, author of Evidence-Based Technical Analysis: Applying the Scientific Method and Statistical Inference to Trading Signals] confirms the significance of Zweig’s original observation. I don’t know whether he considered all possible confounding factors, such as low volume days, effect of externalities on the market, and others I can’t think of. This analysis sounds like so much epidemiological research, finding associations but never proving causality. For example, in the decade of the 1980s, alternate papers found that coffee consumption (greater than three cups per day) is and is not associated with increased risk of cancer of the pancreas. How much credence do you place in Hulbert’s article?”

Using S&P 500 index data for 1942-2006 (67 years), David Aronson finds an average return of about 5.2% in the 60 trading days after double 9-to-1 up days, significantly greater than the average return of about 1.1% during intervals of 60 trading days when there has not been such a signal. To follow up, we pose some questions to David Aronson and then consider strategies an investor might employ to exploit double 9-to-1 up day signals, as follows: Keep Reading

Does the Bullish Percent Index Predict Market Direction?

Is the Bullish Percent Index a useful indicator of overall stock market or sector direction by reliably identifying overbought/oversold conditions from which stock prices are likely to revert? In a study published in the 2005 Journal of Technical Analysis, Andrew Hyer relates the simple average Bullish Percent across 40 stock market sectors (BPAVG) to future broad stock market returns. Using weekly levels of BPAVG as calculated by Dorsey, Wright & Associates and overall stock market returns over the next 100 calendar days based on the Value Line Geometric Index for a total sample period of 1/6/98-1/24/05 (about 368 weeks or 26 intervals of 100 calendar days), he concludes that: Keep Reading

Does Technical Trading Work with Commodity Futures?

Do relatively low transaction costs and ease of short selling enable profitable technical trading in commodity futures markets? In their recent paper entitled “Can Commodity Futures be Profitably Traded with Quantitative Market Timing Strategies?”, Ben Marshall, Rochester Cahan and Jared Cahan investigate the effectiveness of 7,846 quantitative trading rules from five rule families (Filter, Moving Average, Support and Resistance, Channel Breakouts, and On-Balance Volume) for 15 kinds of commodity futures contracts. They test these rules for cocoa, coffee, cotton, crude oil, feeder cattle, gold, heating oil, live cattle, oats, platinum, silver, soy beans, soy oil, sugar and wheat futures. Their testing includes two bootstrapping methodologies, adjustment for data snooping bias and evaluations over different time periods. Using daily price and volume data for 1984-2005, they conclude that: Keep Reading

Short-term Relative VIX Level as a Trading Signal

A reader requested a test of the TradingMarkets 5% VIX rule, which states:

“Do not buy stocks (or the market) anytime the VIX is 5% below its moving average. Why? Because since 1989, the S&P 500 cash market has “lost” money on a net basis 5 days following the times the VIX has been 5% below its 10 day ma.”

“Since 1989, whenever the VIX has been 5% or more above its 10 day ma, the S&P 500 has achieved returns which are better than 2 1/2 to 1 compared to the average weekly returns of all weeks.”

The reader also asked whether one can improve the signal by using a 4% or 6% threshold rather than 5%, or by using a holding interval longer or shorter than five days. We first reproduce the results claimed by TradingMarkets, then investigate whether the signals are of economic value to traders, and finally test sensitivity of results to parameter changes. Using daily CBOE Volatility Index (VIX) and S&P 500 index data for 1/2/90-7/11/07 (4415 trading days), we find that: Keep Reading

Are Bad Weeks (Months) Followed by Bad or Good Ones?

Is a bad week or month in the stock market an indicator of further immediate deterioration? Using weekly and monthly S&P 500 index closing levels since 1950 (2,998 weeks and 689 months), we find that: Keep Reading

The 52-Week High as a Momentum Indicator for Individual Stocks

A reader notes and asks: “It is frequently said that stocks at 52-week highs are the most likely to outperform in the future. Is there any academic evidence to support this assertion?” In their October 2004 Journal of Finance article entitled “The 52-Week High and Momentum Investing”, Thomas George and Chuan-Yang Hwang examine the explanatory power of the 52-week high in the context of momentum investing. They compare the 52-week high as a momentum indicator to benchmark momentum strategies that employ six months of past returns to forecast six months of future returns. Using price data for a broad range of stocks over the period 1963-2001, they find that: Keep Reading

Login
Daily Email Updates
Filter Research
  • Research Categories (select one or more)