Size Effect

Do the stocks of small firms consistently outperform those of larger companies? If so, why, and can investors/traders exploit this tendency? These blog entries relate to the size effect.

Page 1 of 812345678

Interactions among Stock Size, Stock Price and the January Effect

Is there an exploitable interaction between a stock’s market capitalization and its price? In their February 2015 paper entitled “Nominal Prices Matter”, Vijay Singal and Jitendra Tayal examine the relationship between stock prices and returns after: (1) controlling for market capitalization (size); (2) isolating the month of January; and, (3) excluding very small stocks. They each year perform double-sorts based on end-of-November data first into ranked tenths (deciles) by size and then within each size decile into price deciles. They calculate returns for January and for the calendar year with and without January. Using monthly prices and end-of-November market capitalizations for the 3,000 largest U.S. common stocks during December 1962 through December 2013, quarterly institutional ownership data for each stock during December 1980 through December 2013, and actual number of shareholders for each stock during 2004 through 2012, they find that: Keep Reading

Measuring the Size Effect with Capitalization-based ETFs

Do popular capitalization-based exchange-traded funds (ETF) confirm the existence of a reliably exploitable size effect? To investigate, we compare the difference in equally weighted returns (small minus large) for the following matched pair of small-large ETFs:

  • iShares Russell 2000 Index (Smallcap) Index (IWM)
  • iShares Russell 1000 (Largecap) Index (IWB)

Using monthly dividend-adjusted closing prices for these ETFs during May 2000 (the earliest month available for both) through January 2015 (177 months), we find that: Keep Reading

Interaction of Calendar Effects with Other Anomalies

Do stock return anomalies exhibit January and month-of-quarter (first, second or third, excluding January) effects? In his February 2015 paper entitled “Seasonalities in Anomalies”, Vincent Bogousslavsky investigates whether the following 11 widely cited U.S. stock return anomalies exhibit these effects:

  1. Market capitalization (size) – market capitalization last month.
  2. Book-to-market – book equity (excluding stocks with negative values) divided by market capitalization last December.
  3. Gross profitability – revenue minus cost of goods sold divided by total assets.
  4. Asset growth – Annual change in total assets.
  5. Accruals – change in working capital minus depreciation, divided by average total assets the last two years.
  6. Net stock issuance – growth rate of split-adjusted shares outstanding at fiscal year end.
  7. Change in turnover – difference between turnover last month and average turnover the prior six months.
  8. Illiquidity – average illiquidity the previous year.
  9. Idiosyncratic volatility – standard deviation of residuals from regression of daily excess returns on market, size and book-to-market factors.
  10. Momentum – past six-month return, skipping the last month.
  11. 12-month effect – average return in month t−k*12, for k = 6, 7, 8, 9, 10.

Each month, he sorts stocks into tenths (deciles) based on each anomaly variable and forms portfolios that are long (short) the decile with the highest (lowest) values of the variable. He updates all accounting inputs annually at the end of June based on data for the previous fiscal year. Using accounting data and monthly returns for a broad sample of U.S. common stocks during January 1964 to December 2013, he finds that: Keep Reading

Investor Return versus Mutual Fund Performance

Does the average mutual fund investor accrue the average fund performance, or do investor timing practices alter the equation? In their July 2014 paper entitled “Timing Poorly: A Guide to Generating Poor Returns While Investing in Successful Strategies, Jason Hsu, Brett Myers and Ryan Whitby compare the average dollar-weighted and buy-and-hold returns of different U.S. equity mutual fund styles, with focus on the value style. Dollar weighting adjusts the return stream based on the timing and magnitude of fund flows and is a more accurate measure than buy-and-hold of the returns realized by fund investors who may trade in and out of funds. Using monthly returns, monthly total assets and quarterly fund style information for a broad sample of U.S. equity mutual funds during 1991 through 2013, they find that: Keep Reading

Quality-enhanced Size Effect

Given the conflicting evidence about the import of the size effect, is there a way investors can extract a reliable premium from small stocks? In their January 2015 draft paper entitled “Size Matters, If You Control Your Junk”, Clifford Asness, Andrea Frazzini, Ronen Israel, Tobas Moskowitz and Lasse Pedersen examine whether controlling for firm quality mitigates the following seven unfavorable empirical findings that the size effect:

  1. Is weak overall in the U.S.
  2. Has not worked out-of-sample and varies significantly over time.
  3. Only works for extremely small stocks.
  4. Only works in January.
  5. Only works for market capitalization-based measures of size.
  6. Is subsumed by illiquidity.
  7. Is weak internationally.

They control for quality using a Quality-Minus-Junk (QMJ) factor based on profitability, profit growth, safety and payout. They use a portfolio test approach, ranking stocks into value-weighted tenths (deciles) each month to examine differences among stocks sorted by factor. Focusing on returns and factor metrics for a broad sample of U.S. common stocks during July 1957 (when quality metrics become available) through December 2012 and for 23 other developed country stock markets during January 1983 through December 2012, they find that: Keep Reading

Adding Profitability and Investment to the Three-factor Model

Does adding profitability and asset growth (investment) factors improve the performance of the widely used Fama-French three-factor (market, size, book-to-market) model of stock returns? In the September 2014 version of their paper entitled “A Five-Factor Asset Pricing Model” Eugene Fama and Kenneth French assess whether extensions of their three-factor model to include profitability and investment improves model predictive power. They measure profitability as prior-year revenue minus cost of goods sold, interest expense and selling, general and administrative expenses divided by book equity. They define investment as prior-year growth in total assets divided by total assets. Using returns and stock/firm characteristics for a broad sample of U.S. stocks during July 1963 through December 2013 (606 months), they find that: Keep Reading

Style Performance by Calendar Month

The Trading Calendar presents full-year and monthly cumulative performance profiles for the overall stock market (S&P 500 Index) based on its average daily behavior since 1950. How much do the corresponding monthly behaviors of the various size and value/growth styles deviate from an overall equity market profile? To investigate, we consider the the following six exchange-traded funds (ETF) that cut across capitalization (large, medium and small) and value versus growth:

iShares Russell 1000 Value Index (IWD) – large capitalization value stocks.
iShares Russell 1000 Growth Index (IWF) – large capitalization growth stocks.
iShares Russell Midcap Value Index (IWS) – mid-capitalization value stocks.
iShares Russell Midcap Growth Index (IWP) – mid-capitalization growth stocks.
iShares Russell 2000 Value Index (IWN) – small capitalization value stocks.
iShares Russell 2000 Growth Index (IWO) – small capitalization growth stocks.

Using monthly dividend-adjusted closing prices for the style ETFs and S&P Depository Receipts (SPY) over the period August 2001 through December 2014 (161 months, limited by data for IWS/IWP), we find that: Keep Reading

Doing Momentum with Style (ETFs) Robustness/Sensitivity Tests

How sensitive is the performance of “Doing Momentum with Style (ETFs)” to selecting ranks other than winners and to choosing a momentum ranking interval other than six months? This strategy each month ranks the following six style exchange-traded funds (ETF) on past return and rotates to the strongest style:

iShares Russell 1000 Value Index (IWD) – large capitalization value stocks.
iShares Russell 1000 Growth Index (IWF) – large capitalization growth stocks.
iShares Russell Midcap Value Index (IWS) – mid-capitalization value stocks.
iShares Russell Midcap Growth Index (IWP) – mid-capitalization growth stocks.
iShares Russell 2000 Value Index (IWN) – small capitalization value stocks.
iShares Russell 2000 Growth Index (IWO) – small capitalization growth stocks.

Available data are so limited that sensitivity test results may mislead. With that reservation, we perform two robustness/sensitivity tests: (1) comparison of returns for all six ranks of winner through loser based on a ranking interval of six months and a holding interval of one month (6-1); and, (2) comparison of winner returns for ranking intervals ranging from one to 12 months (1-1 through 12-1) and for a six-month lagged six-month ranking interval (12:7-1) per “Isolating the Decisive Momentum (Echo?)”, all with one-month holding intervals. Using monthly adjusted closing prices for the style ETFs and SPDR S&P 500 (SPY) over the period August 2001 through December 2014 (161 months), we find that: Keep Reading

Doing Momentum with Style (ETFs)

“Beat the Market with Hot-Anomaly Switching?” concludes that “a trader who periodically switches to the hottest known anomaly based on a rolling window of past performance may be able to beat the market. Anomalies appear to have their own kind of momentum.” Does momentum therefore work for style-based exchange-traded funds (ETF)? To investigate, we apply a simple momentum strategy to the following six ETFs that cut across market capitalization (large, medium and small) and value versus growth:

iShares Russell 1000 Value Index (IWD) – large capitalization value stocks.
iShares Russell 1000 Growth Index (IWF) – large capitalization growth stocks.
iShares Russell Midcap Value Index (IWS) – mid-capitalization value stocks.
iShares Russell Midcap Growth Index (IWP) – mid-capitalization growth stocks.
iShares Russell 2000 Value Index (IWN) – small capitalization value stocks.
iShares Russell 2000 Growth Index (IWO) – small capitalization growth stocks.

The simple (6-1) strategy allocates all funds each month to the one style ETF with the highest total return over the past six months. A six-month ranking period is intuitively large enough to gauge style momentum but small enough to react to changes in business conditions that might favor one style over others. An alternative, more cautious strategy allocates at the end of each month all funds either to the style ETF with the highest total return over the past six months or to cash depending on whether the S&P 500 Index is above or below its 10-month simple moving average (6-1;SMA10). Using monthly dividend-adjusted closing prices for the style ETFs, the S&P 500 index, 3-month Treasury bills (T-bills) and S&P Depository Receipts (SPY) over the period August 2001 through December 2013 (161 months, limited by data for IWS and IWP), we find that: Keep Reading

Factor Model of Country Stock Market Returns?

Do predictive powers of the size, value and momentum factors observed for individual stocks translate to the country level? In the November 2014 version of his paper entitled “Country Selection Strategies Based on Value, Size and Momentum”, Adam Zaremba investigates country-level value, size and momentum premiums, and tests whether the value and momentum premiums are equally strong across markets of different sizes and evaluates a country-level multi-factor asset pricing model. He measures factors at the country level as:

  • Value: aggregate book-to-market ratio, with aggregate 12-month earnings-to-price-ratio, cash flow-to-price ratio and dividend yield as alternatives where available.
  • Size: total market capitalization of country stocks.
  • Momentum: cumulative return over preceding 12, 9, 6 or 3 months excluding the last month to avoid short-term reversal.

He relies on capitalization-weighted, U.S. dollar-denominated gross total return MSCI equity indexes as available, with Dow Jones and STOXX indexes as fallbacks (an average 56 indexes per month over time). He includes discontinued country indexes. He uses one-month LIBOR as the risk-free rate. Each month, he ranks countries by value, size and momentum into value-weighted or equal-weighted fifths (quintiles). He also performs double-sorts first on size and then on value or momentum. Using monthly firm/stock data for listed stockswithin 78 country indexes as available during February 1999 through September 2014 (147 months), he finds that: Keep Reading

Page 1 of 812345678
Login
Current Momentum Winners

ETF Momentum Signal
for May 2015 (Final)

Winner ETF

Second Place ETF

Third Place ETF

Gross Compound Annual Growth Rates
(Since August 2006)
Top 1 ETF Top 2 ETFs
14.5% 15.0%
Top 3 ETFs SPY
14.6% 7.8%
Strategy Overview
Current Value Allocations

ETF Value Signal
for 2nd Quarter 2015 (Final)

Cash

IEF

LQD

SPY

The asset with the highest allocation is the holding of the Best Value strategy.
Gross Compound Annual Growth Rates
(Since September 2002)
Best Value Weighted 60-40
13.7% 9.6% 8.6%
Strategy Overview
Recent Research
Popular Posts
Popular Subscriber-Only Posts