Objective research to aid investing decisions

Value Investing Strategy (Strategy Overview)

Allocations for December 2020 (Preliminary)
Cash TLT LQD SPY

Momentum Investing Strategy (Strategy Overview)

Allocations for December 2020 (Preliminary)
1st ETF 2nd ETF 3rd ETF

Bonds

Bonds have two price components, yield and response of price to prevailing interest rates. How much of a return premium should investors in bonds expect? How can investors enhance this premium? These blog entries examine investing in bonds.

Bonds During the Off Season?

As implied in “Mirror Image Seasonality for Stocks and Treasuries?”, are bonds better than stocks during the “Sell-in-May” months of May through October? Are behaviors of government, corporate investment grade and corporate high-yield bonds over this interval similar? To investigate, we test seasonal behaviors of:

SPDR S&P 500 (SPY)
Vanguard Intermediate-Term Treasury (VFITX)
Fidelity Investment Grade Bond (FBNDX)
Vanguard High-Yield Corporate Bond (VWEHX)

Using dividend-adjusted monthly prices for these funds during January 1993 (limited by SPY) through January 2020, we find that: Keep Reading

Effects of Execution Delay on SACEVS

How does execution delay affect the performance of the Best Value and Weighted versions of the “Simple Asset Class ETF Value Strategy” (SACEVS)? These strategies each month allocate funds to the following asset class exchange-traded funds (ETF) according to valuations of term, credit and equity risk premiums, or to cash if no premiums are undervalued:

3-month Treasury bills (Cash)
iShares 20+ Year Treasury Bond (TLT)
iShares iBoxx $ Investment Grade Corporate Bond (LQD)
SPDR S&P 500 (SPY)

To investigate, we compare 22 variations of each strategy with execution days ranging from end-of-month (EOM) per the baseline strategy to 21 trading days after EOM (EOM+21). For example, an EOM+5 variation computes allocations based on EOM but delays execution until the close five trading days after EOM. We include a benchmark that each month allocates 60% to SPY and 40% to TLT (60-40) to see whether variations are unique to SACEVS. We focus on gross compound annual growth rate (CAGR), maximum drawdown (MaxDD) and annual Sharpe ratio as key performance statistics. Using daily dividend-adjusted closes for the above ETFs from the end of July 2002 through January 2020, we find that:

Keep Reading

Best Bear Market Asset Class?

A subscriber asked which asset (short stocks, cash, bonds by subclass) is best to hold during equity bear markets. To investigate, we consider two ways to define a bear market: (1) months when SPDR S&P 500 (SPY) is below its 10-month simple moving average (SMA10) at the end of the prior month; and, (2) months when SPY is in drawdown by at least 20% from a high-water mark at the end of the prior month. We consider nine alternative assets:

  1. Short SPY
  2. Cash, estimated using the yield on 3-month U.S. Treasury bills (T-bill)
  3. Vanguard GNMA Securities (VFIIX)
  4. T. Rowe Price International Bonds (RPIBX)
  5. Vanguard Long-Term Treasury Bonds (VUSTX)
  6. Fidelity Convertible Securities (FCVSX)
  7. T. Rowe Price High-Yield Bonds (PRHYX)
  8. Fidelity Select Gold Portfolio (FSAGX)
  9. Spot Gold

Specifically, we compare monthly return statistics, compound annual growth rates (CAGR) and maximum (peak-to-trough) drawdowns (MaxDD) of these nine alternatives during bear market months. Using monthly T-bill yield and monthly dividend-adjusted closing prices for the above assets during January 1993 (as limited by SPY) through Feb 2020, we find that: Keep Reading

Verification Tests of the Smart Money Indicator

A subscriber requested verification of findings in “Smart Money Indicator for Stocks vs. Bonds”, where the Smart Money Indicator (SMI) is a complicated variable that exploits differences in futures and options positions in the S&P 500 Index, U.S. Treasury bonds and 10-year U.S. Treasury notes between institutional investors (smart money) and retail investors (dumb money). To verify, we simplify somewhat the approach for calculating and testing SMI, as follows:

  • Use a “modern” sample of weekly Traders in Financial Futures; Futures-and-Options Combined Reports from CFTC, starting in mid-June 2006 and extending into early February 2020.
  • For each asset, take Asset Manager/Institutional positions as the smart money and Non-reporting positions as the dumb money.
  • For each asset, calculate weekly net positions of smart money and dumb money as longs minus shorts. 
  • For each asset, use a 52-week lookback interval to calculate weekly z-scores of smart and dumb money net positions (how unusual current net positions are). This interval should dampen any seasonality.
  • For each asset, calculate weekly relative sentiment as the difference between smart money and dumb money z-scores.
  • For each asset, use a 13-week lookback interval to calculate recent maximum/minimum relative sentiments between smart money and dumb money for all three inputs. The original study reports that short intervals work better than long ones, and 13 weeks is a quarterly earnings interval.
  • Use a 13-week lookback interval to calculate final SMI as described in “Smart Money Indicator for Stocks vs. Bonds”.

We perform three kinds of tests to verify original study findings, using dividend-adjusted SPDR S&P 500 (SPY) as a proxy for a stock market total return index, 3-month Treasury bill (T-bill) yield as return on cash (Cash) and dividend-adjusted iShares 20+ Year Treasury Bond (TLT) as a proxy for government bonds. We calculate asset returns based on Friday closes (or Monday closes when Friday is a holiday) because source report releases are normally the Friday after the Tuesday report date, just before the stock market close. 

  1. Calculate full sample correlations between weekly final SMI and both SPY and TLT total returns for lags of 0 to 13 weeks.
  2. Calculate over the full sample average weekly SPY and TLT total returns by ranked tenth (decile) of SMI for each of the next three weeks after SMI ranking.
  3. Test a market timing strategy that is in SPY (cash or TLT) when SMI is positive (zero or negative), with 0.1% (0.2%) switching frictions when the alternative asset is cash (TLT). We try execution at the same Friday close as report release date and for lags of one week (as in the original study) and two weeks. We focus on compound annual growth rate (CAGR) and maximum drawdown (MaxDD) as key performance metrics. Buying and holding SPY is the benchmark.

Using inputs as specified above for 6/16/06 through 2/7/20, we find that: Keep Reading

Best Safe Haven ETF?

A subscriber asked which exchange-traded fund (ETF) asset class proxies make the best safe havens for the U.S. stock market as proxied by the S&P 500 Index. To investigate, we test 14 ETFs as potential safe havens:

Utilities Select Sector SPDR (XLU)
iShares 20+ Year Treasury Bond (TLT)
iShares 7-10 Year Treasury Bond (IEF)
iShares 1-3 Year Treasury Bond (SHY)
iShares iBoxx $ Investment Grade Corporate Bond (LQD)
iShares Core US Aggregate Bond (AGG)
iShares TIPS Bond (TIP)
Vanguard REIT ETF (VNQ)
SPDR Gold Shares (GLD)
PowerShares DB Commodity Tracking (DBC)
United States Oil (USO)
iShares Silver Trust (SLV)
PowerShares DB G10 Currency Harvest (DBV)
SPDR Bloomberg Barclays 1-3 Month T-Bill (BIL)

We consider three ways of testing these ETFs as safe havens for the U.S. stock market based on daily or monthly returns:

  1. Contemporaneous return correlation with the S&P 500 Index during all market conditions at daily and monthly frequencies.
  2. Performance during S&P 500 Index bear markets as defined by the index being below its 10-month simple moving average (SMA10) at the end of the prior month.
  3. Performance during S&P 500 Index bear markets as defined by the index being -20%, -15% or -10% below its most recent peak at the end of the prior month.

Using daily and monthly dividend-adjusted closing prices for the 14 ETFs since respective inceptions, and contemporaneous daily and monthly levels of the S&P 500 Index since 10 months before the earliest ETF inception, all through December 2019, we find that: Keep Reading

Simple Term Structure ETF/Mutual Fund Momentum Strategy

Does a simple relative momentum strategy applied to tradable U.S. Treasury term structure proxies produce attractive results by picking the best duration for exploiting current interest rate trend? To investigate, we run short-term and long-term tests. The short-term test employs four exchange-traded funds (ETF) to represent the term structure:

SPDR Barclays 1-3 Month T-Bill (BIL)
iShares 1-3 Year Treasury Bond (SHY)
iShares Barclays 7-10 Year Treasury Bond (IEF)
iShares Barclays 20+ Year Treasury Bond (TLT)

The second test employs three Vanguard mutual funds to represent the term structure:

Vanguard Short-Term Treasury Fund (VFISX)
Vanguard Intermediate-Term Treasury Fund (VFITX)
Vanguard Long-Term Treasury Fund (VUSTX)

For each test, we allocate all funds at the end of each month to the fund with the highest total return over a specified ranking (lookback) interval, ranging from one month to 12 months. To accommodate the longest lookback interval, portfolio formation commences 12 months after the start of the sample. We focus on compound annual growth rate (CAGR) and maximum drawdown (MaxDD) as key performance metrics. Using monthly dividend-adjusted closing prices for BIL since May 2007, for SHY, IEF and TLT since July 2002 and for VFISX, VFITX and VUSTX since October 1991, all through December 2019, we find that: Keep Reading

Ziemba Party Holding Presidency Strategy Update

“Exploiting the Presidential Cycle and Party in Power” summarizes strategies that hold small stocks (large stock or bonds) when Democrats (Republicans) hold the U.S. presidency. How has this strategy performed in recent years? To investigate, we consider three strategy alternatives using exchange-traded funds (ETF):

  1. D-IWM:R-SPY: hold iShares Russell 2000 (IWM) when Democrats hold the presidency and SPDR S&P 500 (SPY) when Republicans hold it.
  2. D-IWM:R-LQD: hold IWM when Democrats hold the presidency and iShares iBoxx Investment Grade Corporate Bond (LQD) when Republicans hold it.
  3. D-IWM:R-IEF: hold IWM when Democrats hold the presidency and iShares 7-10 Year Treasury Bond (IEF) when Republicans hold it.

We use calendar years to determine party holding the presidency. As benchmarks, we consider buying and holding each of SPY, IWM, LQD or IEF and annually rebalanced portfolios of 60% SPY and 40% LQD (60 SPY-40 LQD) or 60% SPY and 40% IEF (60 SPY-40 IEF). We consider as performance metrics: average annual excess return (relative to the yield on 1-year U.S. Treasury notes at the beginning of each year); standard deviation of annual excess returns; annual Sharpe ratio; compound annual growth rate (CAGR); and, maximum annual drawdown (annual MaxDD). We assume portfolio switching/rebalancing frictions are negligible. Except for CAGR, computations are for full calendar years only. Using monthly dividend-adjusted closing prices for the specified ETFs during July 2002 (limited by LQD and IEF) through December 2019, we find that:

Keep Reading

Optimizing the Combination of Economic Growth and Price Trends

Does combining an economic growth variable trend with an asset price trend improve the power to predict stock market return? What is the best way to use such a combination signal? In his December 2019 paper entitled “Growth-Trend Timing and 60-40 Variations: Lethargic Asset Allocation (LAA)”, Wouter Keller investigates variations in a basic Growth-Trend timing strategy (GT) that is bullish and holds the broad U.S. stock market unless both: (1) the U.S. unemployment rate is below its 12-month simple moving average (SMA12); and, (2) the S&P 500 Index is below its SMA10. When both SMAs trend downward, GT is bearish and holds cash. Specifically, he looks at:

  • Basic GT versus a traditional 60-40 stocks-bonds portfolio, rebalanced monthly, with stocks proxied by actual/modeled SPY and bonds/cash proxied by actual/modeled IEF.
  • Improving basic GT, especially maximum drawdown (MaxDD), by replacing assets with equal-weighted, monthly rebalanced portfolios with various component selections. His ultimate portfolio is the Lethargic Asset Allocation (LAA), optimized in-sample based on Ulcer Performance Index (UPI) during February 1949 through June 1981 (mostly rising interest rates) and tested out-of-sample during July 1981 through October 2019 (mostly falling interest rates).

He considers two additional benchmarks: GT applied to the Permanent portfolio (25% allocations to each of SPY, GLD, BIL and TLT) and GT applied to the Golden Butterfly portfolio (20% to each of SPY, IWN, GLD, SHY and TLT). He applies 0.1% one-way trading frictions in all tests. Using monthly unemployment rate since January 1948 and actual/modeled monthly returns for ETFs as specified since February 1949, all through October 2019, he finds that: Keep Reading

Smart Money Indicator for Stocks vs. Bonds

Do differences in expectations between institutional and individual investors in stocks and bonds, as quantified in weekly legacy Commitments of Traders (COT) reports, offer exploitable timing signals? In the February 2019 revision of his paper entitled “Want Smart Beta? Follow the Smart Money: Market and Factor Timing Using Relative Sentiment”, flagged by a subscriber, Raymond Micaletti tests a U.S. stock market-U.S. bond market timing strategy based on an indicator derived from aggregate equity and Treasuries positions of institutional investors (COT Commercials) relative to individual investors (COT Non-reportables). This Smart Money Indicator (SMI) has three relative sentiment components, each quantified weekly based on differences in z-scores between standalone institutional and individual net COT positions, with z-scores calculated over a specified lookback interval:

  1. Maximum weekly relative sentiment for the S&P 500 Index over a second specified lookback interval.
  2. Negative weekly minimum relative sentiment in the 30-Year U.S. Treasury bond over this second lookback interval.
  3. Difference between weekly maximum relative sentiments in the 10-Year U.S. Treasury note and 30-year U.S. Treasury bond over this second lookback interval.

Final SMI is the sum of these components minus median SMI over the second specified lookback interval. He considers z-score calculation lookback intervals of 39, 52, 65, 78, 91 and 104 weeks and maximum/minimum relative sentiment lookback intervals of one to 13 weeks (78 lookback interval combinations). For baseline results, he splices futures-only COT data through March 14, 1995 with futures-and-options COT starting March 21, 1995. To account for changing COT reporting delays, he imposes a baseline one-week lag for using COT data in predictions. He focuses on the ability of SMI to predict the market factor, but also looks at its ability to enhance: (1) intrinsic (time series or absolute) market factor momentum; and, (2) returns for size, value, momentum, profitability, investment, long-term reversion, short-term reversal, low volatility and quality equity factors. Finally, he compares to several benchmarks the performance of an implementable strategy that invests in the broad U.S. stock market (U.S. Aggregate Bond Total Return Index) when a group of SMI substrategies “vote” positively (negatively). Using weekly legacy COT reports and daily returns for the specified factors/indexes during October 1992 through December 2017, he finds that: Keep Reading

Misleading Mutual Fund Classifications?

Are Morningstar mutual fund profiles accurate? In their October 2019 paper entitled “Don’t Take Their Word For It: The Misclassification of Bond Mutual Funds”, Huaizhi Chen, Lauren Cohen and Umit Gurun examine whether aggregate credit risks of actual of U.S. fixed income (corporate bond) mutual fund portfolios match those presented by Morningstar in respective fund profiles. They focus on recent data (first quarter of 2017 through second quarter of 2019), during which Morningstar includes percentages of fund holdings by risk category. Using Morningstar profiles, actual holdings as reported to the SEC, detailed credit ratings of holdings and returns for 1,294 U.S. corporate bond funds during January 2003 through June 2019, they find that:

Keep Reading

Login
Daily Email Updates
Filter Research
  • Research Categories (select one or more)