Objective research to aid investing decisions

Value Investing Strategy (Strategy Overview)

Allocations for September 2024 (Final)
Cash TLT LQD SPY

Momentum Investing Strategy (Strategy Overview)

Allocations for September 2024 (Final)
1st ETF 2nd ETF 3rd ETF

Bonds

Bonds have two price components, yield and response of price to prevailing interest rates. How much of a return premium should investors in bonds expect? How can investors enhance this premium? These blog entries examine investing in bonds.

Retirement Withdrawal Modeling with Actuarial Longevity and Stock Market Mean Reversion

How does use of actuarial estimates of retiree longevity and empirical mean reversion of stock market returns affect estimated retirement portfolio success rates? In the October 2018 revision of his paper entitled “Joint Effect of Random Years of Longevity and Mean Reversion in Equity Returns on the Safe Withdrawal Rate in Retirement”, Donald Rosenthal presents a model of safe inflation-adjusted retirement portfolio withdrawal rates that addresses: (1) uncertainty about the number of years of retirement (rather than the commonly assumed 30 years); and, (2) mean reversion in annual U.S. stock market returns (rather than a random walk). He estimates retirement longevity as a random input based on the Social Security Administration’s 2015 Actuarial Life Table. He estimates stock market real returns and measures their mean reversion using S&P 500 Index inflation-adjusted total annual returns during 1926 through 2017. He models real bond returns using 10-year U.S. Treasury note (T-note) total annual returns during 1928 through 2017. He applies Monte Carlo simulations (3,000 trials for each scenario) to assess retirement portfolio performance by:

  • Assuming an initial retirement portfolio either 100% invested in stocks or 60%/40% in stocks/T-notes (rebalanced at each year-end).
  • Debiting the portfolio each year-end by a fixed, inflation-adjusted percentage of the initial amount.
  • Calculating percentage of simulation trials for which the portfolio is not exhausted before death (success) and average portfolio terminal balance for successful trials.

He considers two benchmarks: (1) no stock market mean reversion (random walk) and fixed 30-year retirement; and, (2) no stock market mean reversion and actuarial estimate of retirement duration. He also runs sensitivity tests to see how changes in assumptions affect success rate. Using the specified data, he finds that:

Keep Reading

Benefits of Volatility Targeting Across Asset Classes

Does volatility targeting improve Sharpe ratios and provide crash protection across asset classes? In their May 2018 paper entitled “Working Your Tail Off: The Impact of Volatility Targeting”, Campbell Harvey, Edward Hoyle, Russell Korgaonkar, Sandy Rattray, Matthew Sargaison, and Otto Van Hemert examine return and risk effects of long-only volatility targeting, which scales asset and/or portfolio exposure higher (lower) when its recent volatility is low (high). They consider over 60 assets spanning stocks, bonds, credit, commodities and currencies and two multi-asset portfolios (60-40 stocks-bonds and 25-25-25-25 stocks-bonds-credit-commodities). They focus on excess returns (relative to U.S. Treasury bill yield). They forecast volatility using realized daily volatility with exponentially decaying weights of varying half-lives to assess sensitivity to the recency of inputs. For most analyses, they employ daily return data to forecast volatility. For S&P 500 Index and 10-year U.S. Treasury note (T-note) futures, they also test high-frequency (5-minute) returns transformed to daily returns. They scale asset exposure inversely to forecasted volatility known 24 hours in advance, applying a retroactively determined constant that generates 10% annualized actual volatility to facilitate comparison across assets and sample periods. Using daily returns for U.S. stocks and industries since 1927, for U.S. bonds (estimated from yields) since 1962, for a credit index and an array of futures/forwards since 1988, and high-frequency returns for S&P 500 Index and 10-year U.S. Treasury note futures since 1988, all through 2017, they find that:

Keep Reading

Worldwide Long-run Returns on Housing, Equities, Bonds and Bills

How do housing, equities and government bonds/bills perform worldwide over the long run? In their February 2018 paper entitled “The Rate of Return on Everything, 1870-2015”, Òscar Jordà, Katharina Knoll, Dmitry Kuvshinov, Moritz Schularick and Alan Taylor address the following questions:

  1. What is the aggregate real return on investments?
  2. Is it higher than economic growth rate and, if so, by how much?
  3. Do asset class returns tend to decline over time?
  4. Which asset class performs best?

To do so, they compile long-term annual gross returns from market data for housing, equities, government bonds and short-term bills across 16 developed countries (Australia, Belgium, Denmark, Finland, France, Germany, Italy, Japan, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, the UK and the U.S.). They decompose housing and equity performances into capital gains, investment incomes (yield) and total returns (sum of the two). For equities, they employ capitalization-weighted indexes to the extent possible. For housing, they model returns based on country-specific benchmark rent-price ratios. Using the specified annual returns for 1870 through 2015, they find that:

Keep Reading

Bond and Stock ETFs Lead-lag

Are there exploitable lead-lag relationships between bonds and stocks, perhaps because bond investors are generally better informed than stock investors or because there is some predictable stocks-bonds rebalancing cycle? To investigate, we examine lead-lag relationships between bond exchange-traded fund (ETF) returns and stock ETF returns. We consider iShares iBoxx $ Investment Grade Corporate Bond (LQD) and  iShares iBoxx $ High-Yield Corporate Bond (HYG) as liquid bond ETFs and SPDR S&P 500 (SPY) as a liquid stock ETF. Using dividend-adjusted daily, weekly and monthly returns for LQDHYG and SPY during mid-April 2007 (HYG inception) through March 2018, we find that: Keep Reading

Bonds Lead Stocks?

Are bond market investors generally shrewder than their stock market counterparts, such that bond yield tops (bottoms) anticipate stock market bottoms (tops)? To investigate, we employ both a monthly lead-lag analysis and a comparison of bond yield and stock market tops and bottoms. We define “top” and “bottom” as the highest (lowest) value in a rolling window that extends from 30 months in the past to 30 months in the future (a total window of five years). Using monthly levels of Moody’s yield on seasoned Aaa corporate bonds and the Dow Jones Industrial Average (DJIA) during October 1928 through February 2018 (about 90 years) and monthly levels of the 10-year government bond interest rate and the stock market from Robert Shiller during January 1871 through February 2018 (about 148 years), we find that: Keep Reading

Rise and Fall of the Fed Model?

What is the historical relationship between U.S. stock market earnings yield (E/P) and U.S. government bond yield (Y)? In their February 2018 paper entitled “Stock Earnings and Bond Yields in the US 1871 – 2016: The Story of a Changing Relationship”, Valeriy Zakamulin and Arngrim Hunnes examine the relationship between E/P Y over the long run, with focus on structural breaks, causes of breaks and direction of causality. They employ a vector error correction model that allows multiple structural breaks. In assessing causes of breaks, they consider inflation, income taxes and Federal Reserve Bank monetary policy. Using quarterly S&P Composite Index level, index earnings, long-term government bond yield and inflation data during 1871 through 2016, along with contemporaneous income tax rates and Federal Reserve monetary actions, they find that:

Keep Reading

T-note Yield Divergence from Trend and Future Stock Market Return

A subscriber requested review of a finding that deviation of 10-year constant maturity U.S. Treasury note (T-note) yield from an intermediate-term linear trend predicts U.S. stock market return. Specifically, when weekly yield is more than one standard deviation of weekly trend divergences below (above) a weekly 70-week linear extrapolation, next-week S&P 500 Index return is on average unusually high (low). To confirm and test usefulness of this finding, we each week:

  1. Perform a linear extrapolation of past T-note yields to forecast next-week T-note yield, but using a 52-week rolling window rather than a 70-week window. A 52-week lookback aligns with an annual inflation cycle, while a 70-week lookback seems arbitrary and may be snooped.
  2. Calculate the difference between next-week actual and forecasted T-note yields.
  3. Calculate the standard deviation of these differences over the 52-week rolling window.

We then segment weekly actual minus forecasted T-note yield differences into: those more than one standard deviation below forecasted yield (Below Lower); those between one standard deviation below and above forecasted yield (Between); and, those more than one standard deviation above forecasted yield (Above Upper). Next, we calculate next-week S&P 500 Index returns for these three segments. Limited by availability of weekly T-note yield data, return calculations commence January 1964. To check robustness of results, we also consider a recent subsample commencing January 2008. To test economic value of findings, we examine a Dynamic Weighted strategy that modifies a benchmark 60% allocation to SPDR S&P 500 (SPY) and 40% allocation to iShares Barclays 7-10 Year Treasuries (IEF), rebalanced weekly, to 80% SPY when T-note condition the prior week is Below Lower and 40% SPY when Above Upper. The strategy backtest commences with inception of IEF at the end of July 2002 and focuses on weekly return statistics, compound annual growth rate (CAGR) and maximum drawdown (MaxDD), ignoring rebalancing/reallocation frictions. Using weekly T-note yields (average of daily values measured on Friday) and contemporaneous S&P 500 Index levels since January 1962, and weekly dividend-adjusted levels of SPY and IEF since July 2002, all through January 2018, we find that: Keep Reading

Exploitability of Deep Value across Asset Classes

Is value investing particularly profitable when the price spread between cheap and expensive assets (the value spread) is extremely large (deep value)? In their November 2017 paper entitled “Deep Value”, Clifford Asness, John Liew, Lasse Pedersen and Ashwin Thapar examine how the performance of value investing changes when the value spread is in its largest fifth (quintile). They consider value spreads for seven asset classes: individual stocks within each of four global regions (U.S., UK, continental Europe and Japan); equity index futures globally; currencies globally; and, bond futures globally. Their measures for value are:

  • Individual stocks – book value-to-market capitalization ratio (B/P).
  • Equity index futures – index-level B/P, aggregated using index weights.
  • Currencies – real exchange rate based on purchasing power parity.
  • Bonds – real bond yield (nominal bond yield minus forecasted inflation).

For each of the seven broad asset classes, they each month rank assets by value. They then for each class form a hedge portfolio that is long (short) the third of assets that are cheapest (most expensive). For stocks and equity indexes, they weight portfolio assets by market capitalization. For currencies and bond futures, they weight equally. To create more deep value episodes, they construct 515 sub-classes from the seven broad asset classes. For asset sub-classes, they use hedge portfolios when there are many assets (272 strategies) and pairs trading when there are few (243 strategies). They conduct both in-sample and out-of-sample deep value tests, the latter buying value when the value spread is within its top inception-to-date quintile and selling value when the value spread reverts to its inception-to-date median. Using data as specified and as available (starting as early as January 1926 for U.S. stocks and as late as January 1988 for continental Europe stocks) through September 2015, they find that:

Keep Reading

Financial Distress, Investor Sentiment and Downgrades as Asset Return Anomaly Drivers

What firm/asset/market conditions signal mispricing? In the November 2017 version of their paper entitled “Bonds, Stocks, and Sources of Mispricing”, Doron Avramov, Tarun Chordia, Gergana Jostova and Alexander Philipov investigate drivers of U.S. corporate stock and bond mispricing based on interactions among asset prices, financial distress of associated firms and investor sentiment. They measure financial distress via Standard & Poor’s long term issuer credit rating downgrades. They measure investor sentiment primarily with the multi-input Baker-Wurgler Sentiment Index, but they also consider the University of Michigan Consumer Sentiment index and the Consumer Confidence Index. They each month measure asset mispricing by:

  1. Ranking firms into tenths (deciles) based on each of 12 anomalies: price momentum, earnings momentum, idiosyncratic volatility, analyst forecast dispersion, asset growth, investments, net operating assets, accruals, gross profitability, return on assets and two measures of net share issuance.
  2. Computing for each firm the equally weighted average of its anomaly rankings, such that a high (low) average ranking indicates the firms’s assets are relatively overpriced (underpriced).

Using monthly firm, stock and bond data for a sample of U.S. firms with sufficient data and investor sentiment during January 1986 through December 2016, they find that: Keep Reading

Asset Class Value Spreads

Do value strategy returns vary exploitably over time and across asset classes? In their October 2017 paper entitled “Value Timing: Risk and Return Across Asset Classes”, Fahiz Baba Yara, Martijn Boons and Andrea Tamoni examine the power of value spreads to predict returns for individual U.S. equities, global stock indexes, global government bonds, commodities and currencies. They measure value spreads as follows:

  • For individual stocks, they each month sort stocks into tenths (deciles) on book-to-market ratio and form a portfolio that is long (short) the value-weighted decile with the highest (lowest) ratios.
  • For global developed market equity indexes, they each month form a portfolio that is long (short) the equally weighted indexes with book-to-price ratio above (below) the median.
  • For each other asset class, they each month form a portfolio that is long (short) the equally weighted assets with 5-year past returns below (above) the median.

To quantify benefits of timing value spreads, they test monthly time series (in only when undervalued) and rotation (weighted by valuation) strategies across asset classes. To measure sources of value spread variation, they decompose value spreads into asset class-specific and common components. Using monthly data for liquid U.S. stocks during January 1972 through December 2014, spot prices for 28 commodities during January 1972 through December 2014, spot and forward exchange rates for 10 currencies during February 1976 through December 2014, modeled and 1-month futures prices for ten 10-year government bonds during January 1991 through May 2009, and levels and book-to-price ratios for 13 developed equity market indexes during January 1994 through December 2014, they find that:

Keep Reading

Login
Daily Email Updates
Filter Research
  • Research Categories (select one or more)