Objective research to aid investing decisions

Value Investing Strategy (Strategy Overview)

Allocations for January 2021 (Final)
Cash TLT LQD SPY

Momentum Investing Strategy (Strategy Overview)

Allocations for January 2021 (Final)
1st ETF 2nd ETF 3rd ETF

Calendar Effects

The time of year affects human activities and moods, both through natural variations in the environment and through artificial customs and laws. Do such calendar effects systematically and significantly influence investor/trader attention and mood, and thereby equity prices? These blog entries relate to calendar effects in the stock market.

Stock Returns Around Easter

Does the seasonal shift marked by the Easter holiday, with the U.S. stock market closed on the preceding Good Friday, produce anomalous returns? To investigate, we analyze the historical behavior of the S&P 500 Index before and after the holiday. Using daily closing levels of the S&P 500 index for 1950-2018 (69 events), we find that: Keep Reading

Optimal Monthly Cycle for SACEMS?

Is there a best time of the month for measuring momentum within the Simple Asset Class ETF Momentum Strategy (SACEMS)? This strategy each month picks winners from the following set of exchange-traded funds (ETF) based on total returns over a specified lookback interval:

PowerShares DB Commodity Index Tracking (DBC)
iShares MSCI Emerging Markets Index (EEM)
iShares MSCI EAFE Index (EFA)
SPDR Gold Shares (GLD)
iShares Russell 2000 Index (IWM)
SPDR S&P 500 (SPY)
iShares Barclays 20+ Year Treasury Bond (TLT)
Vanguard REIT ETF (VNQ)
3-month Treasury bills (Cash)

To investigate, we compare 21 variations of the strategy based on shifting the monthly return calculation cycle relative to trading days from the end of the month (EOM). For example, an EOM+5 cycle ranks assets based on closing prices five trading days after EOM each month. We focus on gross compound annual growth rate (CAGR) and gross maximum drawdown (MaxDD) as key performance statistics for the Top 1, equally weighted (EW) Top 2 and EW Top 3 portfolios of monthly winners. Using monthly total (dividend-adjusted) returns for the specified assets during mid-February 2006 (limited by DBC) through mid-February 2019, we find that: Keep Reading

Effects of Execution Delay on SACEMS

“Optimal Monthly Cycle for SACEMS?” investigates whether using a monthly cycle other than end-of-month (EOM) to pick winning assets improves performance of the Simple Asset Class ETF Momentum Strategy (SACEMS). This strategy each month picks winners from the following set of exchange-traded funds (ETF) based on total returns over a specified lookback interval:

PowerShares DB Commodity Index Tracking (DBC)
iShares MSCI Emerging Markets Index (EEM)
iShares MSCI EAFE Index (EFA)
SPDR Gold Shares (GLD)
iShares Russell 2000 Index (IWM)
SPDR S&P 500 (SPY)
iShares Barclays 20+ Year Treasury Bond (TLT)
Vanguard REIT ETF (VNQ)
3-month Treasury bills (Cash)

In response, a subscriber asked whether sticking with an EOM cycle for determining the winner, but delaying signal execution, affects strategy performance. To investigate, we compare 23 variations of SACEMS portfolios that all use EOM to pick winners but shift execution from the contemporaneous EOM to the next open or to closes over the next 21 trading days (about one month). For example, EOM+5 uses an EOM cycle to determine winners but delays execution until the close five trading days after EOM. We focus on gross compound annual growth rate (CAGR) and maximum drawdown (MaxDD) as key performance statistics for the Top 1, equally weighted (EW) Top 2 and EW Top 3 portfolios of monthly winners. Using daily dividend-adjusted opens and closes for the asset class proxies and the yield for Cash during February 2006 (limited by DBC) through January 2019, we find that: Keep Reading

Tug-of-war Risk and Future Stock Returns

Does persistence in the difference in direction between overnight stock trading and intraday stock trading behaviors (tug of war) predict future returns? In their January 2019 paper entitled “Overnight Returns, Daytime Reversals, and Future Stock Returns: The Risk of Investing in a Tug of War with Noise Traders”, Ferhat Akbas, Ekkehart Boehmer, Chao Jiang and Paul Koch investigate relationships between intensity of the daily tug-of-war between between overnight (noise) and intraday (other) stock traders and future stock returns. They specify tug-of-war intensity as percentage of trading days during a month for which a stock exhibits negative (or positive) daytime reversals divided by average monthly percentage of negative (or positive) reversals over the last 12 months. They then examine whether either negative or positive tug-of-war intensity predicts future stock returns. Using overnight/intraday stock returns for a broad sample of U.S. common stocks, along with monthly returns for widely accepted factors, during May 1993 through December 2017, they find that:

Keep Reading

Global Factor Premiums Over the Very Long Run

Do very old data confirm reliability of widely accepted asset return factor premiums? In their January 2019 paper entitled “Global Factor Premiums”, Guido Baltussen, Laurens Swinkels and Pim van Vliet present replication (1981-2011) and out-of-sample (1800-1908 and 2012-2016) tests of six global factor premiums across four asset classes. The asset classes are equity indexes, government bonds, commodities and currencies. The factors are: time series (intrinsic or absolute) momentum, designated as trend; cross-sectional (relative) momentum, designated as momentum; value; carry (long high yields and short low yields); seasonality (rolling “hot” months); and, betting against beta (BAB). They explicitly account for p-hacking (data snooping bias) and further explore economic explanations of global factor premiums. Using monthly global data as available during 1800 through 2016 to construct the six factors and four asset class return series, they find that:

Keep Reading

Rebalance Timing Noise

Does choice of multi-asset portfolio rebalance date(s) materially affect performance? In their October 2018 paper entitled “Rebalance Timing Luck: The Difference Between Hired and Fired”, Corey Hoffstein, Justin Sibears and Nathan Faber investigate effects of varying portfolio rebalance date on performance. Specifically, they quantify noise (luck) from varying annual rebalance date for a 60% S&P 500 Index-40% 5-year constant maturity U.S. Treasury note (60-40) U.S. market portfolio. Using monthly total returns for these two assets during January 1922 through June 2018, they find that: Keep Reading

Does the Sunspot Cycle Predict Grain Prices?

As a follow-up to “Sunspot Cycle and Stock Market Returns” a reader asked: “Sunspot activity does have a direct relationship to weather. Could one speculate on the agriculture market using the sunspot cycle?” To investigate, we relate sunspot activity to the fairly long U.S. Producer Price Index (PPI) for grains. Using monthly averages of daily sunspot counts and monthly PPI for grains during January 1926 (limited by PPI data) through October 2018, we find that: Keep Reading

Sunspot Cycle and Stock Market Returns

A reader asked whether Charles Nenner, self-described as “the talk of Wall Street since accurately predicting some of the biggest moves in the Markets over the past few years,” accurately forecasts equity and commodity markets. We consider the following:

  • In his July 2007 discussion of the “Nenner Methodology at the Bloomberg Studio”, Charles Nenner cites sunspot activity as a specific key indicator for equity returns. Per this source, he believes that the sunspot cycle correlates strongly with equity markets via the predictable effects of magnetic field disturbances on investors.
  • In “Sunspots Predict ‘Major Crisis’ After 2013: Chartist”, he states: “If there is a high intensity of sunspots, markets rise, if their intensity lowers, markets go down because sunspots affect people’s mood.”

Is there a reliable relationship between sunspot activity and stock market returns? Using monthly averages of daily sunspot counts and monthly levels of Shiller’s S&P Composite Index (also monthly averages of daily levels) during January 1871 (limited by the Shiller data) through October 2018, we find that: Keep Reading

Pervasive Seasonal Relative Weakness Cycles?

Is there a flip side of cyclic relative weakness to the cyclic relative strength described in “Pervasive 12-Month (and 5-Day) Relative Strength Cycles?”? In their October 2018 paper entitled “Seasonal Reversals in Expected Stock Returns”, Matti Keloharju,Juhani Linnainmaa and Peter Nyberg test whether cyclic weakness (seasonal reversal) balances the cyclic strength (seasonality) effect. For example, if a stock is seasonally strong in March, it may be seasonally weak across other months. They test this hypothesis using actual monthly U.S. stock returns and simulated returns calibrated to actual returns. Specifically, they compute correlations between average historical returns for a stock during one month and the sum of its historical average returns during other months. In robustness tests, they repeat this test for 10-year subperiods and for daily U.S. stock returns, monthly non-U.S. stock returns, monthly country stock indexes, monthly country government bond indexes and monthly commodity returns. Finally, they construct the following three factors for U.S. stocks by first each month sorting stocks into two size groups (small and big market capitalizations) and then:

  1. Seasonality factor – Sorting each size group into three average same-calendar-month past return portfolios. The factor return is the difference in value-weighted returns between the two highest-average portfolios and the two lowest-average portfolios.
  2. Seasonal reversal factor – Sorting each size group into three average other-calendar-month past return portfolios within each size group. The factor return is the difference in value-weighted returns between the two lowest-average and the two highest-average portfolios.
  3. Annual-minus-non-annual factor – Sorting each size group into three portfolios based on the difference between the average same-calendar-month and other-calendar-month returns. The factor return is the difference in value-weighted returns between the two largest-difference and the two smallest-difference portfolios.

Using U.S. monthly and daily stock returns since 1963 and monthly returns for country stocks and stock market indexes, country government bond indexes and commodities since the end of 1974, all through 2016, they find that:

Keep Reading

U.S. Equity Turn-of-the-Month as a Diversifying Portfolio

Is the U.S. equity turn-of-the-month (TOTM) effect exploitable as a diversifier of other assets? In their October 2018 paper entitled “A Seasonality Factor in Asset Allocation”, Frank McGroarty, Emmanouil Platanakis, Athanasios Sakkas and Andrew Urquhart test U.S. asset allocation strategies that include a TOTM portfolio as an asset. The TOTM portfolio buys each stock at the open on the last trading day of each month and sells at the close on the third trading day of the following month, earning zero return the rest of the time. They consider four asset universes with and without the TOTM portfolio:

  1. A conventional stocks-bonds mix.
  2. The equity market portfolio.
  3. The equity market portfolio, a small size portfolio and a value portfolio.
  4. The equity market portfolio, a small size portfolio, a value portfolio and a momentum winners portfolio.

They consider six sophisticated asset allocation methods:

  1. Mean-variance optimization.
  2. Optimization with higher moments and Constant Relative Risk Aversion.
  3. Bayes-Stein shrinkage of estimated returns.
  4. Bayesian diffuse-prior.
  5. Black-Litterman.
  6. A combination of allocation methods.

They consider three risk aversion settings and either a 60-month or a 120-month lookback interval for input parameter measurement. To assess exploitability, they set trading frictions at 0.50% of traded value for equities and 0.17% for bonds. Using monthly data as specified above during July 1961 through December 2015, they find that:

Keep Reading

Login
Daily Email Updates
Filter Research
  • Research Categories (select one or more)