Objective research to aid investing decisions

Value Investing Strategy (Strategy Overview)

Allocations for April 2021 (Final)

Momentum Investing Strategy (Strategy Overview)

Allocations for April 2021 (Final)
1st ETF 2nd ETF 3rd ETF

Calendar Effects

The time of year affects human activities and moods, both through natural variations in the environment and through artificial customs and laws. Do such calendar effects systematically and significantly influence investor/trader attention and mood, and thereby equity prices? These blog entries relate to calendar effects in the stock market.

Effects of Execution Delay on SACEVS

How does execution delay affect the performance of the Best Value and Weighted versions of the “Simple Asset Class ETF Value Strategy” (SACEVS)? These strategies each month allocate funds to the following asset class exchange-traded funds (ETF) according to valuations of term, credit and equity risk premiums, or to cash if no premiums are undervalued:

3-month Treasury bills (Cash)
iShares 20+ Year Treasury Bond (TLT)
iShares iBoxx $ Investment Grade Corporate Bond (LQD)
SPDR S&P 500 (SPY)

To investigate, we compare 22 variations of each strategy with execution days ranging from end-of-month (EOM) per the baseline strategy to 21 trading days after EOM (EOM+21). For example, an EOM+5 variation computes allocations based on EOM but delays execution until the close five trading days after EOM. We include a benchmark that each month allocates 60% to SPY and 40% to TLT (60-40) to see whether variations are unique to SACEVS. We focus on gross compound annual growth rate (CAGR), maximum drawdown (MaxDD) and annual Sharpe ratio as key performance statistics. Using daily dividend-adjusted closes for the above ETFs from the end of July 2002 through January 2020, we find that:

Keep Reading

Stock Market and the Super Bowl

Investor mood may affect financial markets. Sports may affect investor mood. The biggest mood-mover among sporting events in the U.S. is likely the National Football League’s Super Bowl. Is the week before the Super Bowl especially distracting and anxiety-producing? Is the week after the Super Bowl focusing and anxiety-relieving? Presumably, post-game elation and depression cancel between respective fan bases. Using past Super Bowl dates since inception and daily/weekly S&P 500 Index levels for 1967 through 2019 (53 events), we find that: Keep Reading

Style Performance by Calendar Month

Trading Calendar presents full-year and monthly cumulative performance profiles for the overall stock market (S&P 500 Index) based on its average daily behavior since 1950. How much do the corresponding monthly behaviors of the various size and value/growth styles deviate from an overall equity market profile? To investigate, we consider the the following six exchange-traded funds (ETF) that cut across capitalization (large, medium and small) and value versus growth:

iShares Russell 1000 Value Index (IWD) – large capitalization value stocks.
iShares Russell 1000 Growth Index (IWF) – large capitalization growth stocks.
iShares Russell Midcap Value Index (IWS) – mid-capitalization value stocks.
iShares Russell Midcap Growth Index (IWP) – mid-capitalization growth stocks.
iShares Russell 2000 Value Index (IWN) – small capitalization value stocks.
iShares Russell 2000 Growth Index (IWO) – small capitalization growth stocks.

Using monthly dividend-adjusted closing prices for the style ETFs and S&P Depository Receipts (SPY) over the period August 2001 through December 2019 (limited by data for IWS/IWP), we find that: Keep Reading

Seasonal, Technical and Fundamental S&P 500 Index Timing Tests

Are there any seasonal, technical or fundamental strategies that reliably time the U.S. stock market as proxied by the S&P 500 Total Return Index? In the February 2018 version of his paper entitled “Investing In The S&P 500 Index: Can Anything Beat the Buy-And-Hold Strategy?”, Hubert Dichtl compares excess returns (relative to the U.S. Treasury bill [T-bill] yield) and Sharpe ratios for investment strategies that time the S&P 500 Index monthly based on each of:

  • 4,096 seasonality strategies.
  • 24 technical strategies (10 slow-fast moving average crossover rules; 8 intrinsic [time series or absolute] momentum rules; and, 6 on-balance volume rules).
  • 18 fundamental variable strategies based on a rolling 180-month regression, with 1950-1965 used to generate initial predictions.

In all cases, when not in stocks, the strategies hold T-bills as a proxy for cash. His main out-of-sample test period is 1966-2014, with emphasis on a “crisis” subsample of 2000-2014. He includes extended tests on seasonality and some technical strategies using 1931-2014. He assumes constant stock index-cash switching frictions of 0.25%. He addresses data snooping bias from testing multiple strategies on the same sample by applying Hansen’s test for superior predictive ability. Using monthly S&P 500 Index levels/total returns and U.S. Treasury bill yields since 1931 and values of fundamental variables since January 1950, all through December 2014, he finds that:

Keep Reading

Extra Attention to Earliest Quarterly Earnings Announcements

Does the market react most strongly to the earliest quarterly earnings announcements? In their October 2019 paper entitled “Calendar Rotations: A New Approach for Studying the Impact of Timing using Earnings Announcements”, Suzie Noh, Eric So and Rodrigo Verdi study effects of the relative order of U.S. firm quarterly earnings announcements, which vary systematically for some firms according to the day of the week of the first day of a month. Specifically, they qualify firms by identifying those firms that exhibit systematic earnings announcement schedules (such as Friday of the fourth week after quarter ends, sometimes set in firm bylaws) for at least four consecutive same fiscal quarters. They then for each firm each fiscal quarter:

  • Calculate EA Order, ranking of earnings announcement date divided by number of firms with the same fiscal quarter-end.
  • Compute change in EA Order compared to the same fiscal quarter last year, indicating a calendar acceleration or delay in announcement. Positive (negative) change in EA Order indicates delay (acceleration)
  • Examine effects of change in EA Order on media coverage (number of articles), stock trading volume and stock return from one trading day before to one trading day after earnings announcement.

Using sample of 76,622 firm-quarters during 2004 through 2017, they find that: Keep Reading

SACEVS with Quarterly Allocation Updates

Do quarterly allocation updates for the Best Value and Weighted versions of the “Simple Asset Class ETF Value Strategy” (SACEVS) work as well as monthly updates? These strategies allocate funds to the following asset class exchange-traded funds (ETF) according to valuations of term, credit and equity risk premiums, or to cash if no premiums are undervalued:

3-month Treasury bills (Cash)
iShares 20+ Year Treasury Bond (TLT)
iShares iBoxx $ Investment Grade Corporate Bond (LQD)
SPDR S&P 500 (SPY)

Changing from monthly to quarterly allocation updates does not sacrifice information about lagged quarterly S&P 500 Index earnings, but it does sacrifice currency of term and credit premiums. To assess alternatives, we compare cumulative performances and the following key metrics for quarterly and monthly allocation updates: gross compound annual growth rate (CAGR), gross maximum drawdown (MaxDD), annual gross returns and volatilities and annual gross Sharpe ratios. Using monthly dividend-adjusted closes for the above ETFs during September 2002 (earliest alignment of months and quarters) through September 2019, we find that:

Keep Reading

National Election Cycle and Stocks Over the Long Run

“Stock Market and the National Election Cycle” examines the behavior of the U.S. stock market across the U.S. presidential term cycle (years 1, 2, 3 or 4) starting in 1950. Is a longer sample informative? To extend the sample period, we use the long run S&P Composite Index of Robert Shiller. The value of this index each month is the average daily level during that month. It is therefore “blurry” compared to a month-end series, but the blurriness is not of much concern over a 4-year cycle. Using monthly S&P Composite Index levels from the end of December 1872 through August 2019 (about 37.5 presidential terms), we find that:

Keep Reading

Optimal Cycle for Monthly SMA Signals?

A subscriber commented and asked:

“Some have suggested that the end-of-the-month effect benefits monthly simple moving average strategies that trade on the last day of the month. Is there an optimal day of the month for long-term SMA calculation and does the end-of-the-month effect explain the optimal day?”

To investigate, we compare 21 variations of a 10-month simple moving average (SMA10) timing strategy generated by shifting the monthly return calculation cycle relative to trading days from the end of the month (EOM). Specifically, the 21 variations represent calculation cycles ranging from 10 trading days before EOM (EOM-10) to 10 trading days after EOM (EOM+10). We apply the strategy to the S&P 500 Index as a proxy for the U.S. stock market. The strategy holds the S&P 500 Index (cash) whenever the index is above (below) its SMA10 as of the most recent monthly calculation. Using daily S&P 500 Index closes and 3-month Treasury bill (T-bill) yields as the return on cash during January 1990 through mid-June 2019, we find that: Keep Reading

Simple Tests of Sy Harding’s Seasonal Timing Strategy

Does the technically adjusted Seasonal Timing Strategy popularized some years ago in Sy Harding’s Street Smart Report Online (now unavailable due to Mr. Harding’s death) generate attractive performance? This strategy combines “the market’s best average calendar entry [October 16] and exit [April 20] days with a technical indicator, the Moving Average Convergence Divergence (MACD).” According to Street Smart Report Online, applying this strategy to a Dow Jones Industrial Average (DJIA) index fund generated a cumulative return of 213% during 1999 through 2012, compared to 93% for the DJIA itself. To check over a longer sample period with an alternative market proxy, we apply the strategy to SPDR S&P 500 (SPY) since its inception and consider several alternatives, as follows:

  1. SPY – buy and hold SPY.
  2. Seasonal-MACD – seasonal timing per specified dates with MACD refinement, holding cash when not in SPY.
  3. Seasonal Only – seasonal timing per the same dates without MACD refinement, again holding cash when not in SPY.
  4. SMA200 – hold SPY (cash) when the S&P 500 Index is above (below) its 200-day simple moving average at the prior daily close. 

For all strategies, we use the yield on short-term U.S. Treasury bills (T-bills) as the return on cash. Using daily closes for the S&P 500 Index, dividend-adjusted closes for SPY and T-bill yield during 1/29/93 (SPY inception) through 5/13/19, we find that: Keep Reading

“Sell in May” Over the Long Run

Does the conventional wisdom to “Sell in May” (and “Buy in November”, hence also the term “Halloween Effect”) work over the long run, perhaps due to biological/psychological effects of seasons (Seasonal Affective Disorder)? To check, we turn to the long run dataset of Robert Shiller. This data set includes monthly levels of the S&P Composite Index, calculated as average of daily closes during the month. We split the investing year into two half-years (seasons): May through October, and November through April. Using S&P Composite Index levels, associated dividend yields and contemporaneous long-term interest rates (comparable to yields on 10-year U.S. Treasury notes) from the Shiller dataset spanning April 1871 through April 2019 (296 6-month returns), we find that: Keep Reading

Daily Email Updates
Filter Research
  • Research Categories (select one or more)