Objective research to aid investing decisions

Value Investing Strategy (Strategy Overview)

Allocations for June 2023 (Final)
Cash TLT LQD SPY

Momentum Investing Strategy (Strategy Overview)

Allocations for June 2023 (Final)
1st ETF 2nd ETF 3rd ETF

Calendar Effects

The time of year affects human activities and moods, both through natural variations in the environment and through artificial customs and laws. Do such calendar effects systematically and significantly influence investor/trader attention and mood, and thereby equity prices? These blog entries relate to calendar effects in the stock market.

Overnight Effect Across Asset Classes?

Does the overnight return effect found pervasively among equity markets, as summarized in “Persistence of Overnight/Intraday Equity Market Return Patterns”, also hold for other asset classes? To investigate, we compare open-to-close (O-C) and close-to-open (C-O) average returns, standard deviations of returns and cumulative performances for the exchange-traded funds (ETF) used as asset class proxies in the Simple Asset Class ETF Momentum Strategy (SACEMS). Using daily dividend-adjusted opening and closing prices of these ETFs during mid-December 2007 (inception of the youngest ETF) through early March 2022, we find that: Keep Reading

Combining Overnight and TOTM Effects

With reference to “Turn-of-the-Month Effect Persistence and Robustness” and “Persistence of Overnight/Intraday Equity Market Return Patterns”, a subscriber asked about a strategy that is long SPDR S&P 500 ETF Trust (SPY) only from market close to market open during the turn-of-the-month (TOTM). To investigate, we consider three strategies:

  1. TOTM Close-to-Open: long SPY from close-to-open during TOTM, and otherwise in cash (eight round-trip trades per month).
  2. TOTM Close-to-Close: long SPY continuously during TOTM, and otherwise in cash (one round-trip trade per month).
  3. B&H: buy and hold SPY.

We initially ignore trading frictions, but then look at breakeven frictions for the first strategy. Because of trading frequency, we ignore return on cash. We focus on compound annual growth rate (CAGR) and maximum drawdown (MaxDD) based on daily data as key performance statistics. Using daily dividend-adjusted opens and closes for SPY during February 1993 (inception) through February 2022, we find that: Keep Reading

Persistence of Overnight/Intraday Equity Market Return Patterns

What best explains the decades-long pattern of strong overnight and weak intraday returns in most equity markets? In his January 2022 paper entitled “They Still Haven’t Told You”, Bruce Knuteson reviews possible explanations for this pattern and identifies the most likely. His theoretical equity index benchmark is a random walk with slight upward drift (due to general economic expansion and survivorship bias), with intraday return on average larger than overnight return due to higher intraday risk. Using close-to-open and open-to-close levels of 21 major stock market indexes as available during January 1990 through December 2021, he finds that: Keep Reading

Long-term SMA and TOTM Combination Strategy

“Turn-of-the-Month Effect Persistence and Robustness” indicates that average absolute returns during the turn-of-the-month (TOTM) are strong for both bull and bear markets. Does a strategy of capturing all bull market returns and TOTM returns only during bear markets perform well? To investigate, we apply four strategies to S&P Depository Receipts (SPY) as a tradable proxy for the stock market:

  1. Buy and hold SPY.
  2. Hold SPY (cash) when SPY closes above (below) its 200-day simple moving average (SMA200).
  3. Hold SPY from the close five trading days before through the close four trading days after the last trading day of each month and cash at all other times (TOTM).
  4. Hold SPY when SPY closes above its 200-day SMA and otherwise use the TOTM strategy (SMA200 or TOTM).

We explore sensitivities of these strategies to a range of one-way SPY-cash switching frictions, with baseline 0.1%. Using daily dividend-adjusted SPY from the end of January 1993 through early February 2022 and contemporaneous 3-month Treasury bill (T-bill) yields, we find that: Keep Reading

Turn-of-the-Month Effect Persistence and Robustness

Is the Turn-of-the-Month (TOTM) effect, a concentration of relatively strong stock market returns around the turns of calendar months, persistent over time and robust to different market conditions. Does it exist for all calendar months? Does it persist throughout the U.S. political cycle? Does it work for different equity indexes? To investigate, we define TOTM as the interval from the close five trading days before to the close four trading days after the last trading day of the month (a total of eight trading days, centered on the monthly close). Using daily closes for the S&P 500 Index since January 1928 and for the Russell 2000 Index since mid-September 1987, both through early February 2022, we find that: Keep Reading

Sector Performance by Calendar Month

Trading Calendar presents full-year and monthly cumulative performance profiles for the overall U.S. stock market (proxied by the S&P 500 Index) based on average daily behavior. Do monthly behaviors of U.S. stock market sectors deviate from the overall market profile? To investigate, we consider the nine Select Sector Standard & Poor’s Depository Receipts (SPDR) exchange-traded funds (ETF), all of which originate in December 1998:

Materials Select Sector SPDR (XLB)
Energy Select Sector SPDR (XLE)
Financial Select Sector SPDR (XLF)
Industrial Select Sector SPDR (XLI)
Technology Select Sector SPDR (XLK)
Consumer Staples Select Sector SPDR (XLP)
Utilities Select Sector SPDR (XLU)
Health Care Select Sector SPDR (XLV)
Consumer Discretionary Select SPDR (XLY)

Using monthly dividend-adjusted closing prices for these ETFs, along with contemporaneous data for SPDR S&P 500 (SPY) as a benchmark, during December 1998 through December 2021, we find that: Keep Reading

Combining Defensive-in-May and Sector Momentum

In response to “Combining Defensive-in-May and Sector Reversion”, a subscriber requested testing of a strategy combining seasonal effects (cyclical sectors during November through April and defensive sectors during May through October) and sector momentum. Cyclical and defensive choices are:

At the end of each October, the strategy buys the one cyclical fund with the highest return over some past interval (betting on momentum). At the end of each April, the strategy sells the cyclic fund and buys the one defensive fund with the highest return over the past interval (again, betting on momentum). For convenience, we use a 6-month lookback interval to rank funds. We use buy-and-hold SPDR S&P 500 (SPY) as a benchmark. We focus on semiannual return statistics, along with compound annual growth rates (CAGR) and maximum drawdowns (MaxDD). Using semiannual dividend-adjusted prices for the selected funds during October 2006 (limited by availability of VIG) through October 2021 (defining the first and last available semiannual intervals), we find that: Keep Reading

Combining Defensive-in-May and Sector Reversion

Inspired by “The iM Seasonal ETF Switching Strategy”, a subscriber requested testing of a strategy combining seasonal effects (cyclical sectors during November through April and defensive sectors during May through October) and sector reversion. Cyclical and defensive choices are:

At the end of each October, the strategy buys the one cyclical fund with the lowest return over some past interval (betting on reversion). At the end of each April, the strategy sells the cyclic fund and buys the one defensive fund with the lowest return over the past interval (again, betting on reversion). For convenience, we use a 6-month lookback interval to rank funds. We use buy-and-hold SPDR S&P 500 (SPY) as a benchmark. We focus on semiannual return statistics, along with compound annual growth rates (CAGR) and maximum drawdowns (MaxDD). Using semiannual dividend-adjusted prices for the selected funds during October 2006 (limited by availability of VIG) through October 2021 (defining the first and last available semiannual intervals), we find that: Keep Reading

Defensive-in-May Sector Rotation

A subscriber asked about a strategy that holds a portfolio of cyclical sectors and small capitalization stocks during November through April and a portfolio of defensive sectors during May through October, as follows:

We use NAESX for small stocks to obtain a history as long as those for the equity sectors. We weight components of the cyclical and defensive portfolios equally. We use buy-and-hold NAESX and an equal-weighted, semiannually rebalanced portfolio of all seven funds (Sector EW) as benchmarks. We focus on semiannual return statistics, along with compound annual growth rates (CAGR) and maximum drawdowns (MaxDD). Using semiannual dividend-adjusted prices for the selected funds during April 1999 through October 2021 (defining the first and last available semiannual intervals), we find that: Keep Reading

Style Performance by Calendar Month

Trading Calendar presents full-year and monthly cumulative performance profiles for the overall stock market (S&P 500 Index) based on its average daily behavior. How much do the corresponding monthly behaviors of the various size and value/growth styles deviate from an overall equity market profile? To investigate, we consider the the following six exchange-traded funds (ETF) that cut across capitalization (large, medium and small) and value versus growth:

iShares Russell 1000 Value Index (IWD) – large capitalization value stocks.
iShares Russell 1000 Growth Index (IWF) – large capitalization growth stocks.
iShares Russell Midcap Value Index (IWS) – mid-capitalization value stocks.
iShares Russell Midcap Growth Index (IWP) – mid-capitalization growth stocks.
iShares Russell 2000 Value Index (IWN) – small capitalization value stocks.
iShares Russell 2000 Growth Index (IWO) – small capitalization growth stocks.

Using monthly dividend-adjusted closing prices for the style ETFs and SPDR S&P 500 (SPY) during August 2001 through October 2021 (limited by data for IWS/IWP), we find that: Keep Reading

Login
Daily Email Updates
Filter Research
  • Research Categories (select one or more)