Objective research to aid investing decisions

Value Investing Strategy (Strategy Overview)

Allocations for September 2023 (Final)
Cash TLT LQD SPY

Momentum Investing Strategy (Strategy Overview)

Allocations for September 2023 (Final)
1st ETF 2nd ETF 3rd ETF

Investing Expertise

Can analysts, experts and gurus really give you an investing/trading edge? Should you track the advice of as many as possible? Are there ways to tell good ones from bad ones? Recent research indicates that the average “expert” has little to offer individual investors/traders. Finding exceptional advisers is no easier than identifying outperforming stocks. Indiscriminately seeking the output of as many experts as possible is a waste of time. Learning what makes a good expert accurate is worthwhile.

Trendy Mutual Fund Performance

Should mutual fund investors go with trendy new funds? In their August 2016 paper entitled “What’s Trending? The Performance and Motivations for Mutual Fund Startups”, Jason Greene and Jeffrey Stark examine the interactions of mutual fund trendiness with growth in assets under management, fees and performance. They quantify fund trendiness by each month:

  1. Relating each key word found in fund names to industry fund flows over the past 12 months.
  2. Subtracting the average key word-flow relationship for the entire sample period from the monthly relationship to indicate current key word trendiness.
  3. Ranking key words by trendiness.
  4. Averaging the trendiness ranks for each key word in each fund name to measure fund trendiness.

They then relate fund trendiness to fund flows over the next 12 months, fund fee level at fund inception and fund performance over its first five years of existence. Using fund names and monthly fund returns, fund assets and factor returns for alpha calculations during 1993 through 2014 (7,072 distinct funds), they find that: Keep Reading

Factor Timing among Hedge Fund Managers

Can hedge fund managers reliably time eight factors explaining multi-class asset returns: equity market; size; bond market; credit spread; trend-following for bonds, currencies and commodities; and, emerging markets? In their July 2016 paper entitled “Timing is Money: The Factor Timing Ability of Hedge Fund Managers”, Bart Osinga, Marc Schauten and Remco Zwinkels study the magnitude, determinants and persistence of factor timing ability among hedge fund managers. To minimize biases, they: include live and dead funds; remove the first 18 months of returns for each fund; consider only funds that have at least 36 monthly returns and average assets under management $10 million; and, consider only funds that report net monthly excess returns in U.S. dollars. They also exclude the top and bottom 1% of all returns to suppress outlier effects. Using monthly returns for 2,132 dead and 992 live hedge funds encompassing nine investment styles, and contemporaneous factor returns, during January 1994 through April 2014, they find that: Keep Reading

Evaluating 5,017 Technical Trading Recommendations

Do equity trade recommendations from technical analysis experts beat the market? In his February 2016 paper entitled “Are Chartists Artists? The Determinants and Profitability of Recommendations Based on Technical Analysis”, Dirk Gerritsen evaluates technically based buy and sell recommendations for individual Dutch stocks and the AEX index. Specifically, he measures abnormal performance from 10 trading days before (including the publication date) through 20 trading days after recommendations. For individual stocks, “abnormal” means in excess of the return estimated by the four-factor (market, size, book-to-market, momentum) model. For the AEX index, abnormal means in excess of average index return over the year preceding the 30-day measurement interval. For recommendations that include stop-loss instructions, he measures also abnormal asset performance after any stop-loss actions. Finally, he examines whether recommendations agree with the consensus of eight kinds of simple technical trading rules. Using daily stock and and AEX index prices, total returns and trading volumes associated with 5,017 recommendations (3,967 with 500 stop-losses for individual stocks and 1,050 with 242 stop-losses for the index) from 101 experts on the Dutch stock market during 2004 through 2010, he finds that: Keep Reading

Risk of Financial Advisor Misconduct

How should investors assess the risk of financial advisor misconduct? In their March 2016 paper entitled “The Market for Financial Adviser Misconduct”, Mark Egan, Gregor Matvos and Amit Seru investigate the recent extent of misconduct among registered financial advisors (“advisors”) and financial advisory firms in the U.S. Their data include employment history, customer disputes, disclosed investigations and disciplinary events (civil, criminal and regulatory). Using information on 1.2 million registered financial advisors (644,277 current and 638,528 former) during 2005 through 2015, they find that: Keep Reading

Pick the Worst-performing Funds?

Is selecting mutual funds based on strong performance over the last three years helpful (discovering fund manager skill) or harmful (signaling imminent fund strategy mean reversion)? In the February 2016 version of their paper entitled “The Harm in Selecting Funds that Have Recently Outperformed”, Bradford Cornell, Jason Hsu and David Nanigian investigate future mutual fund performance based on recent past performance relative to stated benchmarks. They focus on a past performance interval of three years because: institutional consultants cite this measurement as one of the most important criterion for fund selection; and, Morningstar’s rating algorithm emphasizes three-year past performance. Specifically, every three years they:

  1. Rank funds by expense ratio and exclude the highest tenth as likely poor choices.
  2. Define Winner, Median and Loser funds as the tenths of the rest with the highest, middle (centered on the 50th percentile) and lowest benchmark-adjusted returns the past three years.
  3. Track the performance of the equally weighted and monthly rebalanced Winner, Median and Loser groups over the next three years.

Using benchmark-adjusted returns for actively managed U.S. equity mutual funds during January 1994 through December 2015, they find that: Keep Reading

Hedge Funds vs. Mutual Funds: Give and Take

Who are the givers and who are the takers among mutual funds and hedge funds? In their January 2016 paper entitled “Style and Skill: Hedge Funds, Mutual Funds, and Momentum”, Mark Grinblatt, Gergana Jostova, Lubomir Petrasek and Alexander Philipov analyze quarter-to-quarter changes in Form 13F stock holdings to assess investment styles and sources of performance for hedge funds and mutual funds. They focus on the interaction between portfolio weight changes and future stock returns to measure investing skill. They calculate fund alpha via adjustments for stock size, book-to-market ratio and (when appropriate) momentum. Using quarterly 13F filings of 589 mutual funds and 1,342 hedge funds during 1998 to 2012, they find that: Keep Reading

Following the Leaders On SeekingAlpha and StockTwits

Do SeekingAlpha and StockTwits offer valuable stock-picking information? In their March 2015 paper entitled “Crowds on Wall Street: Extracting Value from Collaborative Investing Platforms”, Gang Wang, Tianyi Wang, Bolun Wang, Divya Sambasivan, Zengbin Zhang, Haitao Zheng and Ben Zhao evaluate the stock-picking expertise available via SeekingAlpha and StockTwits. They tailor stock sentiment measures for these sources and relate these measures to future stock and stock market performance. They test ranking of author informativeness both directly via future stock returns and indirectly by level of reader interaction (comments). They then test strategies for exploiting sentiments of top authors. Finally, they summarize responses to a May 2014 survey of 500 SeekingAlpha authors (95 responses) and 500 non-contributing SeekingAlpha users (104 responses). Using SeekingAlpha content from launch in 2004 through March 2014, StockTwits content from launch in 2009 through February 2014 and daily returns (not including dividends) from associated individual stocks and S&P 500 SPDR (SPY) as a market proxy, they find that: Keep Reading

Mark Hulbert’s Nasdaq Newsletter Sentiment Index

“Mark Hulbert’s NASDAQ Newsletter Sentiment Index” reviews the usefulness of the Hulbert Stock Newsletter Sentiment Index (HSNSI), which “reflects the average recommended stock market exposure among a subset of short-term market timers tracked by the Hulbert Financial Digest.” Mark Hulbert presents HSNSI as a contrarian signal for future stock returns; when HSNSI is high (low), he views the outlook for stocks as materially bearish (bullish). In recent years, he has shifted emphasis in his MarketWatch columns from HSNSI to the Hulbert Nasdaq Newsletter Sentiment Index (HNNSI), stating that: “Since the Nasdaq responds especially quickly to changes in investor mood, and because those timers are themselves quick to shift their recommended exposure levels, the HNNSI is the Hulbert Financial Digest’s most sensitive barometer of investor sentiment.” Is HNNSI useful? Using a small sample of 38 values of HNNSI over the period April 2010 through September 2015 (generated by searching MarketWatch.com for “HNNSI”) and contemporaneous daily closes of the S&P 500 Index, we find that: Keep Reading

Exploiting Crowdsourced Earnings Estimates and Stock Sentiments

Are readily available crowdsourced firm earnings estimates and stock sentiment measurements exploitable? In the September 2015 revision of their paper entitled “Tweet Sentiments and Crowd-Sourced Earnings Estimates as Valuable Sources of Information Around Earnings Releases”, Jim Kyung-Soo Liew,  Shenghan Guo and Tongli Zhang investigate whether earnings estimates from Estimize and sentiment measurements from iSentium usefully predict stock behavior after earnings announcements. Estimize aggregates inputs from students, independent researchers, private investors, sell-side professionals and buy-side analysts to generate earnings estimates. iSentium derives sentiment scores (ranging from -30 to +30) from real-time natural language processing of Twitter texts about stocks, market indexes and exchange-traded funds. The authors relate pre-announcement earnings estimates and sentiment to post-earnings announcement stock returns. Using Estimize and iSentium data as available, Wall Street consensus earnings estimates, actual firm quarterly earnings and associated stock returns for 16,840 earnings announcements during November 2011 through December 2014, they find that: Keep Reading

Technical vs. Fundamental Investment Recommendations

Are expert technicians or fundamentalists better forecasters of short-term and intermediate-term asset returns? In the August 2015 version of their paper entitled “Talking Numbers: Technical versus Fundamental Recommendations”, Doron Avramov, Guy Kaplanski and Haim Levy assess the economic value of dual technical and fundamental recommendations presented simultaneously on “Talking Numbers”, a CNBC and Yahoo joint broadcast… “featuring fundamental and technical recommendations before and during the market open. Dual recommendations are made by highly experienced analysts representing prominent institutions.” Recommendations address both individual stocks and asset classes, including U.S. and foreign broad equity indexes, sector/industry equity indexes, bonds, commodities and exchange rates. Using 1,000 dual recommendations on 262 stocks and 620 dual recommendations on other assets, along with associated price data, during November 2011 through December 2014, they find that: Keep Reading

Login
Daily Email Updates
Filter Research
  • Research Categories (select one or more)