Objective research to aid investing decisions

Value Investing Strategy (Strategy Overview)

Allocations for July 2024 (Final)

Momentum Investing Strategy (Strategy Overview)

Allocations for July 2024 (Final)
1st ETF 2nd ETF 3rd ETF

Momentum Investing

Do financial market prices reliably exhibit momentum? If so, why, and how can traders best exploit it? These blog entries relate to momentum investing/trading.

Which Kind of (ETF) Momentum Is Best?

When implemented via exchange-traded funds (ETF), does an equity sector momentum strategy beat an equity style momentum strategy? How do these approaches compare to a geographic equity momentum strategy? In his paper entitled “Optimal Momentum”, runner-up for the 2011 Wagner Award presented by the National Association of Active Investment Managers, Gary Antonacci uses ETFs to compare style, sector and geographic momentum strategies. He uses a six-month ranking period to select the top two of six iShares value-growth-size ETFs, the top three of nine SPDR sector ETFs and the top two of four iShares region/country ETFs each month, with a 0.2% per fund switching friction. In addition, he experiments with adding short-term and intermediate-term Treasury ETFs and then gold to the geographic momentum ranking process. His benchmarks are the Russell 1000 ETF (IWB), the AQR Momentum Index (adjusted by debiting an estimated annual trading friction of 0.7%) and equally weighted portfolios of the ETF groups (rebalanced monthly). Using eight years of monthly ETF prices (2003 through 2010) and 34 years of related monthly index levels, he concludes that: Keep Reading

12-month High Effect for Sectors?

“The Industry 52-week High Effect” summarizes findings that the 52-week high effect, the future outperformance (underperformance) of stocks currently near their respective 52-week highs (lows), is stronger and more consistent for 20 industries than for individual stocks. Do findings apply to equity sectors that are somewhat broader than the 20 industries? Specifically, might such a strategy outperform past six-month return when applied to the following nine sector exchange-traded funds (ETF) defined by the Select Sector Standard & Poor’s Depository Receipts (SPDR), all of which have trading data back to December 1998:

Materials Select Sector SPDR (XLB)
Energy Select Sector SPDR (XLE)
Financial Select Sector SPDR (XLF)
Industrial Select Sector SPDR (XLI)
Technology Select Sector SPDR (XLK)
Consumer Staples Select Sector SPDR (XLP)
Utilities Select Sector SPDR (XLU)
Health Care Select Sector SPDR (XLV)
Consumer Discretionary Select SPDR (XLY)

To check, we consider three strategies based on closeness of each sector ETF to its 12-month high, defined as ratio of monthly close to highest monthly close over the prior 12 months. The three strategies are to: (1) allocate all funds each month to the sector ETF closest to its 12-month high at the end of the preceding month (12MH-1); (2) allocate all funds each month to the sector ETF closest to its 12-month high at the end of the month before the preceding month (12MH-1;1); and, (3) allocate all funds each quarter to the sector ETF closest to its 12-month high at the end of the month before the end of the quarter (12MH-3;1). Strategy (2) addresses the concern that a sector ETF surging toward a 12-month might experience some reversion the next month, and strategy (3) addresses the concern (based on the methodology in “The Industry 52-week High Effect”) that the effect materializes over several months. For comparison, we include the strategy of monthly allocation to the sector ETF with the highest total return over the past six months (6-1). Using monthly dividend-adjusted closing prices for the nine sector ETFs and S&P Depository Receipts (SPY) over the period December 1998 through March 2011 (148 months), we find that: Keep Reading

The Industry 52-week High Effect

Are 52-week highs and lows useful equity price momentum indicators at the industry level? In their March 2011 paper entitled “Industry Information and the 52-Week High Effect”, Xin Hong, Bradford Jordan and Mark Liu compare the 52-week high effect for industries to that for individual stocks. This effect consists of the future outperformance (underperformance) of stocks currently near their respective 52-week highs (lows). Using monthly closes and rolling 52-week (intraday) highs for all stocks listed on NYSE, AMEX and NASDAQ and 20 value-weighted industry indexes constructed from SIC codes for these firms over the period July 1963 through 2009, they find that: Keep Reading

Interaction of Investor Sentiment and Stock Return Anomalies

Does aggregate investor sentiment affect the strength of well-known U.S. stock return anomalies? In their January 2011 paper entitled “The Short of It: Investor Sentiment and Anomalies”, Robert Stambaugh, Jianfeng Yu and Yu Yuan explore the interaction of aggregate investor sentiment with 11 cross-sectional stock return anomalies. Their approach reflects expectations that: (1) overpricing of stocks is more common than underpricing due to short-sale constraints; and, (2) a high sentiment level amplifies overpricing. Specifically, they consider the effect of investor sentiment on hedge portfolios that are long (short) the highest(lowest)-performing) value-weighted deciles of stocks sorted on: financial distress (two measures), net stock issuance, composite equity issuance, total accruals, net operating assets, momentum, gross profit-to-assets, asset growth, return-on-assets and investment-to-assets. They use a long-run sentiment index derived from principal component analysis of six sentiment measures: trading volume as measured by NYSE turnover; the dividend premium; the closed-end fund discount; the number of and first-day returns on Initial Public Offerings; and, the equity share in new issues. They measure anomaly alphas relative to the three-factor model (adjusting for market, size, book-to-market). Using monthly sentiment and stock return anomaly data as available over the period July 1965 through January 2008, they find that: Keep Reading

Interactions of Momentum, Valuation and Idiosyncratic Volatility

For what kind of stocks does momentum work best? In his March 2011 paper entitled “Growth Options, Idiosyncratic Volatility and Momentum”, Umut Celiker investigates the interactions among valuation (market to-book ratio, arguably a proxy for firm growth opportunities), valuation uncertainty (idiosyncratic volatility) and stock price momentum. For calendar-time analysis, he ranks stocks each month into quintiles by past six-month return, with a skip-month, and holds an equal-weighted hedge portfolio that is long the top (winner) quintile and short the bottom (loser) quintile for the next six months. For event analysis, he extends the holding interval to 60 months to explore momentum persistence/reversal. He computes stock idiosyncratic volatility relative to the S&P 500 Index over the prior 36 months. He defines the up (down) market state as the top 80% (bottom 20%) of months based on 60-month past value-weighted market returns averaged for each of the lagged six months. Most analysis focuses on the up market state. Using monthly firm accounting and stock price data for a broad sample of U.S. stocks over the period 1965 to 2008, he finds that: Keep Reading

Robustness Tests for Ten Popular Stock Return Anomalies

In their March 2011 paper entitled “The Shrinking Space for Anomalies”, George Jiang and Andrew Zhang investigate the robustness of ten well-known anomalies by iteratively “shrinking the stock space” in two ways to determine whether and how the anomalies really work. The ten anomaly variables are: size, book-to-market ratio, momentum, two liquidity measures, idiosyncratic volatility, accrual, capital expenditure, sales growth and net share issuance. The first way of “shrinking the stock space” involves: (1) ranking the universe of stocks by each of the ten anomaly variables into deciles; (2) iteratively trimming deciles from side of a variable distribution that a hedge portfolio would sell and the side that a hedge portfolio would buy; and, (3) retesting the strength of the anomaly associated with the variable after each iterative trimming. The second way of “shrinking the stock space” involves: (1) trimming from the sample stocks with the smallest market capitalizations and the most extreme book-to-market ratios until size, book-to-market and momentum no longer have significant four-factor alphas for value-weighting and equal equal-weighting (thereby “perfecting” the sample for the four-factor model); and, (2) retesting the strength of the anomalies associated with the other seven variables using the perfected sample. This approach obviates weaknesses in alpha measurement via the commonly applied but imperfect three-factor (market, size, book-to-market) and four-factor (plus momentum) risk models. Using firm characteristics and trading data for all non-financial NYSE, AMEX, and NASDAQ common stocks over the period July 1962 through December 2007, they find that: Keep Reading

Bottom-up Anomalies vs. Top-down Portfolio Efficiency

How do widely recognized stock return anomalies (return variations unexplained by asset pricing models) mesh with efficient portfolio selection theory? In their paper entitled “Investing in Stock Market Anomalies”, Turan Bali, Stephen Brown and Ozgur Demirtas examine five prominent stock market anomalies whose existence is robust through time and across markets (size, book-to-market, short-term reversal, intermediate-term momentum and long-term reversion) in contexts of efficient portfolio selection via mean-variance and stochastic dominance methods. In other words, they test whether portfolios that apply these anomalies exhibit exceptionally good combinations of return and volatility, or obviously outperform on a purely statistical basis. Both these portfolio selection methods have shortcomings related to their inclusion of extreme, impractical choices. The authors consider relaxed (“Almost”) versions of these methods that prohibit such choices as “pathological.” The authors form value-weighted size and book-to-market portfolios annually and value-weighted reversal, momentum and reversion portfolios monthly. Using monthly data for July 1926 through December 2008 (990 months) for a broad sample of U.S. stocks to construct diversified anomaly portfolios, they find that: Keep Reading

Exclude Japan from Momentum Portfolios?

Does momentum not work for Japanese equities? In his March 2011 paper entitled “Momentum in Japan: The Exception that Proves the Rule”, Clifford Asness examines whether the failure of stock price momentum in Japan materially undermines belief in momentum investing. He argues that any such examination should adopt the context of value and momentum as an integrated system. His methodology is to rank stocks representing the top 90% of capitalization within each of the U.S., UK, Europe (excluding UK) and Japan into three equal groups by value (book-to-market ratio, with book value lagged six months) or momentum (12-month past return, skipping the most recent month). The spreads in value-weighted returns between the top and bottom thirds define the value and momentum premiums within each geographic market. Using monthly returns for the selected stocks over the period July 1981 through December 2010 (29.5 years), he finds that: Keep Reading

Concentrating the Value Premium and Momentum with FSCORE

Can financial statement analysis expose stocks that investors incorrectly view as value or growth (glamor)? In their February 2011 paper entitled “Identifying Expectation Errors in Value/Glamour Strategies: A Fundamental Analysis Approach”, Joseph Piotroski and Eric So investigate stock misvaluation by contrasting firm performance expectations implied by value/growth classification with a simple financial statement metric that differentiates improving versus deteriorating financial performance. This metric (FSCORE, scale 0 to 9), based on nine binary financial statement parameters, measures both the overall financial condition of a firm and the degree to which the firm has improved this condition over the prior year. The authors examine how FSCORE interacts with five widely used relative valuation metrics (book-to-market ratio, cash flow-to-price ratio, earnings-to-price ratio, sales growth and equity share turnover) and with momentum. Using annual financial data and stock returns for a broad sample of firms over the period 1972 through 2008 (117,412 firm-year observations), they find that: Keep Reading

Reversal, Momentum, Reversion and 12-month Echo Dependencies on January Returns

Are January returns important to the profitability of short-term reversal, intermediate-term momentum, long-term reversion and 12-month echo trading strategies? In her December 2010 paper entitled “Momentum, Seasonality and January”, Yaqiong Yao investigates the role of  January returns within these previously discovered anomalies. The study’s core methodology is to reform equally weighted hedge portfolios each month that are long/short stocks in extreme tenths (deciles) of  past returns over various intervals.  The one-month reversal strategy is long (short) losers (winners) based on prior month returns. Momentum strategies are long (short) winners (losers) based on past 11-month or 12-month returns, with a skip month before portfolio formation to avoid short-term reversal. The reversion strategy is long (short) losers (winners) based on past four-year returns, with a skip-year before portfolio formation to avoid intermediate-term momentum. The 12-month echo strategy is long (short) winners (losers) based on returns for the same month the prior one, two or three years. Using monthly returns for a broad sample of NYSE/AMEX stocks during 1926 through 2009, she finds that: Keep Reading

Daily Email Updates
Filter Research
  • Research Categories (select one or more)