Objective research to aid investing decisions

Value Investing Strategy (Read Overview)

Allocations for January 2020 (Final)
Cash TLT LQD SPY

Momentum Investing Strategy (Read Overview)

Allocations for January 2020 (Final)
1st ETF 2nd ETF 3rd ETF

Momentum Investing

Do financial market prices reliably exhibit momentum? If so, why, and how can traders best exploit it? These blog entries relate to momentum investing/trading.

Best U.S. Equity Market Hedge Strategy?

What steps should investors consider to mitigate impact of inevitable large U.S. stock market corrections? In their May 2019 paper entitled “The Best of Strategies for the Worst of Times: Can Portfolios be Crisis Proofed?”, Campbell Harvey, Edward Hoyle, Sandy Rattray, Matthew Sargaison, Dan Taylor and Otto Van Hemert compare performances of an array of defensive strategies with focus on the eight worst drawdowns (deeper than -15%) and three NBER recessions during 1985 through 2018, including:

  1. Rolling near S&P 500 Index put options, measured via the CBOE S&P 500 PutWrite Index.
  2. Credit protection portfolio that is each day long (short) beta-adjusted returns of duration-matched U.S. Treasury futures (BofAML US Corp Master Total Return Index), scaled retrospectively to 10% full-sample volatility.
  3. 10-year U.S. Treasury notes (T-notes).
  4. Gold futures.
  5. Multi-class time-series (intrinsic or absolute) momentum portfolios applied to 50 futures contract series and reformed monthly, with:
    • Momentum measured for 1-month, 3-month and 12-month lookback intervals.
    • Risk adjustment by dividing momentum score by the standard deviation of security returns.
    • Risk allocations of 25% to currencies, 25% to equity indexes, 25% to bonds and 8.3% to each of agricultural products, energies and metals. Within each group, markets have equal risk allocations.
    • Overall scaling retrospectively to 10% full-sample volatility.
    • With or without long equity positions.
  6. Beta-neutral factor portfolios that are each day long (short) stocks of the highest (lowest) quality large-capitalization and mid-capitalization U.S. firms, based on profitability, growth, balance sheet safety and/or payout ratios.

They further test crash protection of varying allocations to the S&P 500 Index and a daily reformed hedge consisting of equal weights to: (1) a 3-month time series momentum component with no long equity positions and 0.7% annual trading frictions; and, (2) a quality factor component with 1.5% annual trading frictions. For this test, they scale retrospectively to 15% full-sample volatility. Throughout the paper, they assume cost of leverage is the risk-free rate. Using daily returns for the S&P 500 Index and inputs for the specified defensive strategies during 1985 through 2018, they find that:

Keep Reading

SACEMS with Different Alternatives for “Cash”

Do alternative “Cash” (deemed risk-free) instruments materially affect performance of the “Simple Asset Class ETF Momentum Strategy” (SACEMS)? Changing the proxy for Cash can affect how often the model selects Cash, as well as the return on Cash when selected. To investigate, we test separately each of the following yield and exchange-traded funds (ETF) as the risk-free asset:

3-month Treasury bills (Cash), a proxy for the money market as in base SACEMS
SPDR Bloomberg Barclays 1-3 Month T-Bill (BIL)
iShares 1-3 Year Treasury Bond (SHY)
iShares 7-10 Year Treasury Bond (IEF)
iShares TIPS Bond (TIP)

In other words, we add one of the five risk-free assets to the following base set of eight ETFs:

PowerShares DB Commodity Index Tracking (DBC)
iShares MSCI Emerging Markets Index (EEM)
iShares MSCI EAFE Index (EFA)
SPDR Gold Shares (GLD)
iShares Russell 2000 Index (IWM)
SPDR S&P 500 (SPY)
iShares Barclays 20+ Year Treasury Bond (TLT)
Vanguard REIT ETF (VNQ)

We focus on compound annual growth rate (CAGR) and maximum drawdown (MaxDD) as key performance metrics and consider Top 1, equally weighted (EW) EW Top 2 and EW Top 3 SACEMS portfolios. Using end-of-month total (dividend-adjusted) returns for the specified assets during February 2006 (except May 2007 for BIL) through May 2019, we find that:

Keep Reading

Are U.S. Equity Momentum ETFs Working?

Are U.S. stock and sector momentum strategies, as implemented by exchange-traded funds (ETF), attractive? To investigate, we consider five momentum-oriented U.S. equity ETFs with assets over $100 million, all currently available (in order of decreasing assets):

  • iShares Edge MSCI USA Momentum Factor (MTUM) – holds U.S. large-capitalization and mid-capitalization stocks with relatively high momentum.
  • First Trust Dorsey Wright Focus 5 (FV) – holds five equally weighted sector and industry ETFs selected via a proprietary relative strength methodology, reformed twice a month.
  • PowerShares DWA Momentum Portfolio (PDP) – invests at least 90% of assets in approximately 100 U.S. common stocks per a proprietary methodology designed to identify powerful relative strength characteristics, reformed quarterly.
  • First Trust Dorsey Wright Dynamic Focus 5 ETF (FVC) – similar to FV but with added risk management via an increasing allocation to cash equivalents when relative strengths of more than one-third of the universe diminish relative to a cash index, reformed twice a month.
  • SPDR Russell 1000 Momentum Focus (ONEO) – tracks the Russell 1000 Momentum Focused Factor Index, picking U.S. stocks that have recently outperformed.

Because some sample periods are very short, we focus on daily return statistics, but also consider cumulative returns and maximum drawdowns (MaxDD). We use two benchmark ETFs, iShares Russell 1000 (IWB) and iShares Russell 3000 (IWV), according to momentum fund descriptions. Using daily returns for the five momentum funds and the two benchmarks as available through mid-May 2019, we find that: Keep Reading

Intrinsic (Time Series) Momentum Everywhere?

Do all kinds of assets and long-short equity factor premiums exhibit exploitable time series (intrinsic or absolute momentum)? In their September 2018 paper entitled “Trends Everywhere”, Abhilash Babu, Ari Levine, Yao Hua Ooi, Lasse Pedersen and Erik Stamelos test intrinsic momentum on 58 traditional (studied in prior research) assets, 82 alternative (futures, forwards, and swaps not previously studied) assets and 16 long-short equity factors. They include only reasonably liquid (investable) assets and strategies. For equity factors, they each month: (1) classify over 4,000 U.S. common stocks as big or small according to NYSE median market capitalization; (2) within each size group, reform for each factor a value-weighted hedge portfolio that is long (short) the 30% of stocks with the highest (lowest) expected returns; and, (3) for each factor, average big and small hedge portfolio returns. They focus on a 12-month lookback interval for calculating momentum, taking a long (short) position in an asset/factor with positive (negative) return over this interval. For comparability of assets, they scale each position to an estimated 40% annualized volatility based on exponentially-weighted squared past daily returns. They assess diversification potentials by looking at pairwise correlations between momentum series, and between portfolios of momentum series and benchmark indexes (S&P 500 Index, MSCI World Index, Barclays Aggregate Bond Index and S&P GSCI Index). Using daily excess returns for the selected assets, factors and benchmarks as available during January 1985 through December 2017, they find that:

Keep Reading

Optimal Intrinsic Momentum and SMA Intervals Across Asset Classes

What are the optimal intrinsic/absolute/time series momentum (IM) and simple moving average (SMA) measurement intervals for different asset class proxies? To investigate, we use data from the Simple Asset Class ETF Momentum Strategy for the following eight asset class exchange-traded funds (ETF), plus Cash:

PowerShares DB Commodity Index Tracking (DBC)
iShares MSCI Emerging Markets Index (EEM)
iShares MSCI EAFE Index (EFA)
SPDR Gold Shares (GLD)
iShares Russell 2000 Index (IWM)
SPDR S&P 500 (SPY)
iShares Barclays 20+ Year Treasury Bond (TLT)
Vanguard REIT ETF (VNQ)
3-month Treasury bills (Cash)

For IM tests, we invest in each ETF (Cash) when its return over the past one to 12 months is positive (negative). For SMA tests, we invest in each ETF (Cash) when its price is above (below) its average monthly price over the past two to 12 months. Since SMA rules use price levels and IM rules use returns, IM measurement interval N corresponds to SMA measurement interval N+1. For example, a 6-month IM measurement uses the same start and stop points as a 7-month SMA measurement. We focus on compound annual growth rate (CAGR) and maximum drawdown (MaxDD) as key metrics for comparing different IM and SMA measurement intervals since earliest ETF data availabilities based on the longest IM measurement interval. Using monthly dividend-adjusted closing prices for the asset class proxies and the yield for Cash over the period July 2002 (or inception if not available by then) through April 2019, we find that:

Keep Reading

More International Equity Market Granularity for SACEMS?

A subscriber asked whether more granularity in international equity choices for the “Simple Asset Class ETF Momentum Strategy” (SACEMS), as considered by Decision Moose, would improve performance. To investigate, we replace the iShares MSCI Emerging Markets Index (EEM) and the iShares MSCI EAFE Index (EFA) with four regional international equity exchange-traded funds (ETF). The universe of assets becomes:

PowerShares DB Commodity Index Tracking (DBC)
iShares MSCI Pacific ex Japan (EPP)
iShares MSCI Japan (EWJ)
SPDR Gold Shares (GLD)
iShares Europe (IEV)
iShares Latin America 40 (ILF)
iShares Russell 1000 Index (IWB)
iShares Russell 2000 Index (IWM)
iShares Barclays 20+ Year Treasury Bond (TLT)
Vanguard REIT ETF (VNQ)
3-month Treasury bills (Cash)

We compare original (SACEMS Base) and modified (SACEMS Granular), each month picking winners from their respective sets of ETFs based on total returns over a fixed lookback interval. We focus on gross compound annual growth rate (CAGR), gross maximum drawdown (MaxDD) and rough gross annual Sharpe ratio (average annual return divided by standard deviation of annual returns) as key performance statistics for the Top 1, equally weighted (EW) Top 2 and EW Top 3 portfolios of monthly winners. Using daily and monthly total (dividend-adjusted) returns for the specified assets during February 2006 (limited by DBC) through April 2019, we find that: Keep Reading

Stock Return Autocorrelations and Option Returns

Does return persistence of individual stocks predict associated option returns? In their March 2019 paper entitled “Stock Return Autocorrelations and the Cross Section of Option Returns”, Yoontae Jeon, Raymond Kan and Gang Li investigate relationships between equity option returns and return autocorrelations of underlying stocks. They consider call options, put options and straddles (long both a call and a put with the same strike price). Each month on standard option expiration date, they:

  • Measure one-step monthly stock return autocorrelations using a 36-month rolling window of monthly returns for U.S. stocks with over 20 monthly observations.
  • Rank stocks (and respective options) by autocorrelation into fifths (quintiles).
  • Construct a hedge portfolio that is long (short) the equal-weighted or market capitalization-weighted stocks in the top (bottom) quintile of autocorrelations, to calculate stock portfolio return as a control variable.
  • Construct corresponding hedge portfolios of call options, put options or straddles, limiting choices to reasonably liquid options with moneyness closest to 1.0 and time to expiration closest to 30 days. 
  • Hold these portfolios until the next standard option expiration date.

They further explore out-of-sample use of results via modified mean-variance optimization of a portfolio consisting of the S&P 500 Index, the risk-free asset and equity options with bid-ask spreads no greater than 10% of price. They size individual option positions as a function of underlying stock volatility, variance risk premium and stock return autocorrelation. They assume investor utility derives from constant relative risk aversion level 3. For the frictionless case, they base option returns on the bid-ask midpoint. For the case with frictions, they assume buys (sells) occur at the ask (bid). Using specified stock and options data during January 1996 through December 2017, they find that: Keep Reading

Effects of Factor Crowding

Does crowding of factor investing strategies reliably predict returns for those strategies? In his March 2019 paper entitled “The Impact of Crowding in Alternative Risk Premia Investing”, Nick Baltas explores mechanics of alternative risk (factor) premium crowding and implications of crowding for future performance. He classifies factor premiums as: divergent (such as momentum), inherently destabilizing due to positive feedback loops and lack of fundamental anchors; or, convergent (such as value), having self-correcting negative feedback loops and fundamental anchors. To test crowding effects, he considers the following premiums: equity value (book-to-market), size (market capitalization), momentum (from regression of return from 12 months ago to one month ago versus volatility), quality (return on assets) and low beta (versus the MSCI World Index); commodities momentum (12-month return); and, currencies value (purchasing power parity) and momentum (12-month return). Each premium consists of returns from a hedge portfolio that is each week long (short) the equal-weighted assets with the highest (lowest) expected returns. For equities, he uses top and bottom tenths. For commodities and currencies, he uses top and bottom thirds. His crowding metric (CoMetric) is average pairwise correlation of factor-adjusted returns of assets within the long or short sides of premium portfolios over the last 52 weeks (except 260 weeks for value). He defines the 20% of weeks with the highest (lowest) CoMetrics as most (least) crowded. Using the specified factor and return data for liquid developed market stocks since September 2004, 24 constituents of the S&P GSCI Commodity Index since January 1999, and 26 developed and emerging markets currency pairs versus the U.S. dollar since January 2000, all through May 2018, he finds that:

Keep Reading

Ubiquitous Equity Factor Momentum?

Do returns for equity factors (long stocks with high expected returns and short stocks with low expected returns based on some firm/stock trading characteristic) broadly and reliably exhibit momentum? In other words, do factors with strong (weak) returns in recent months have strong (weak) returns next month? In the February 2019 revision of their paper entitled “Factor Momentum Everywhere”, Tarun Gupta and Bryan Kelly test return momentum among 65 widely studied long-short equity factors for the U.S. and 62 factors globally that have underlying data available since the mid-1960s, including: valuation ratios (such as earnings-to-price and book-to-market); size, investment and profitability metrics (such as market capitalization, sales growth and return on equity); idiosyncratic risk metrics (such as betting against beta, stock volatility and skewness); and, liquidity metrics (such as Amihud illiquidity, share volume and bid-ask spread). For each factor, they each month:

  • Exclude as outliers the top and bottom 1% of stocks with the most extreme factor characteristic values.
  • Split residual stocks into big and small size segments based on median NYSE market capitalization for U.S. stocks and 80th percentile of market capitalizations for international stocks.
  • Within size segments, sort stocks into low/medium/high characteristic bins based on 30/40/30 percentile splits and form value-weighted sub-portfolios that are long (short) high (low) bins.
  • Form an overall factor portfolio with long side 0.5 * (Large High + Small High) and short side 0.5 * (Large Low + Small Low).

They consider both time series factor momentum (TSFM, intrinsic or absolute momentum) and cross-sectional factor momentum (CSFM, relative momentum). As benchmarks, they consider the equal-weighted average return for all factors and a conventional stock momentum factor based on returns from 12 months to one month ago. Using monthly U.S. and global data required to construct the factor portfolios and their returns from 1965 through 2017, they find that: Keep Reading

Optimal Retirement Glidepath with Trend Following

What are optimal allocations during retirement years for a portfolio of stocks and bonds, without and with a trend following overlay? In their March 2019 paper entitled “Absolute Momentum, Sustainable Withdrawal Rates and Glidepath Investing in US Retirement Portfolios from 1925”, Andrew Clare, James Seaton, Peter Smith and Steve Thomas compare outcomes across two sets of U.S. retirement portfolios since 1925:

  1. Standard – allocations to the S&P 500 Index and a bond index ranging from all stocks to all bonds in increments of 10%, rebalanced at the end of each month.
  2. Trend following – the same portfolios with a trend following overlay that shifts stock index and bond index allocations to U.S. Treasury bills (T-bills) when below respective 10-month simple moving averages at the end of the preceding month.

They consider investment horizons of 2 to 30 years to assess glidepath effects. They consider both U.S. Treasury bonds and U.S. corporate bonds to assess credit effects. For comparison of portfolio outcomes, they use real (inflation-adjusted) returns and focus on Perfect Withdrawal Rate (PWR), the maximum annual withdrawal rate that results in zero terminal value (requiring perfect foresight). Using monthly data for the S&P 500 Index, U.S. government and corporate bond indexes and U.S. inflation during 1926 through 2016, they find that: Keep Reading

Login
Daily Email Updates
Filter Research
  • Research Categories (select one or more)