Objective research to aid investing decisions

Value Investing Strategy (Strategy Overview)

Allocations for May 2020 (Preliminary)
Cash TLT LQD SPY

Momentum Investing Strategy (Strategy Overview)

Allocations for May 2020 (Final)
1st ETF 2nd ETF 3rd ETF

Momentum Investing

Do financial market prices reliably exhibit momentum? If so, why, and how can traders best exploit it? These blog entries relate to momentum investing/trading.

Not the Simplest Asset Class ETF Momentum Strategy

Does adding international equity exposure and an escape to “cash” enhance performance of a relative momentum strategy that switches between stock and U.S. Treasury bond exchange-traded funds (ETF)? In his February 2018 paper entitled “Simple and Effective Market Timing with Tactical Asset Allocation Part 2 – Choices”, Lewis Glenn updates and considers two extensions to a strategy summarized in “Simplest Asset Class ETF Momentum Strategy?” that each month holds SPDR S&P 500 (SPY) or iShares Barclays 20+ Year Treasury Bond (TLT) depending on which has the higher total return over the last three months. Specifically, the three strategies are:

  1. Pair Switching (PS) – the original strategy as described above.
  2. Quint Switching (QS) – adds iShares MSCI EAFE (EFA), PowerShares QQQ (QQQ) and iShares MSCI Emerging Markets (EEM) to the asset universe, each month picking the top performer.
  3. Quint Switching Filtered (QSF) – modifies QS by adding a rule that if any of SPY, TLT, EFA, QQQ and EFA have non-positive returns over the lookback interval, switch to iShares Barclays 7-10 Year Treasury (IEF) . 

For all strategies, he includes 0.1% switching frictions for each buy and sell action. He focuses on compound annual growth rate (CAGR) and maximum drawdown (DDDmax) as key strategy performance metrics. He considers momentum ranking (lookback) intervals of 1 to 5 months to determine the optimal interval for the two strategy extensions. Using monthly dividend-adjusted closes of the specified funds during April 2004 through January 2018, he finds that:

Keep Reading

Technical Trading of Equity Factor Premiums

Do technical trend trading/intrinsic momentum strategies work for widely used equity factors such as size (small minus big market capitalizations), value (high minus low book-to-market ratios), profitability (robust minus weak), investment (conservative minus aggressive) and momentum (winners minus losers)? In their January 2018 paper entitled “What Goes up Must Not Come Down – Time Series Momentum in Factor Risk Premiums”, Maximilian Renz investigates time variation and trend-based predictability of these five factors and the market factor. He first constructs price series for the six long-short factor portfolios. He then considers seven rules based on a short simple moving average (SMA) crossing above (bullish) or below (bearish) a long SMA measured in trading days: SMA(1, 20), SMA(1, 40), SMA(1, 120), SMA(1, 180), SMA(1, 240), SMA(20, 180) and SMA(20, 240). He also considers two intrinsic (absolute or time series) momentum rules based on change in price over the past 180 or 240 trading days (positive bullish and negative bearish). Motivated by prior research by others, he focuses on SMA(1, 180), daily price crossing its 180-day SMA. He measures trend-based statistical predictability of factor premiums and investigates economic value via a strategy that levers factor exposures between 0 and 1.5 using trend-based signals. Finally, he examines whether incorporating trend information improves accuracies of 1-factor (market), 3-factor (adding size and value) and 5-factor (further adding profitability and investment) models of stock returns. Using daily returns for the six selected U.S. stock market equity factors and for 30 industries during July 1963 through December 2015, he finds that: Keep Reading

Industry Rotation Based on Advanced Regression Techniques

Can advanced regression techniques identify monthly cross-industry lead-lag return relationships that usefully indicate an industry rotation strategy? In their January 2018 paper entitled “Dynamic Return Dependencies Across Industries: A Machine Learning Approach”, David Rapach, Jack Strauss, Jun Tu and Guofu Zhou examine dynamic relationships between past and future returns (lead-lag) across 30 U.S. industries. To guard against overfitting the data, they employ a machine learning regression approach that combines a least absolute shrinkage and selection operator (LASSO) and ordinary least squares (OLS). Their approach allows each industry’s return to respond to lagged returns of all 30 industries. They assess economic value of findings via a long-short industry rotation hedge portfolio that is each month long (short) the fifth, or quintile, of industries with the highest (lowest) predicted returns for the next month based on inception-to-date monthly calculations. They consider three benchmark hedge portfolios based on: (1) historical past average returns of the industries; (2) an OLS-only approach; and, (3) a cross-sectional, or relative, momentum approach that is each month long (short) the quintile of industries with the highest (lowest) returns over the past 12 months. Using monthly returns  for 30 value-weighted U.S. industry groups during 1960 through 2016, they find that:

Keep Reading

Preliminary Momentum Strategy and Value Strategy Updates

The home page“Simple Asset Class ETF Momentum Strategy” (SACEMS) and “Simple Asset Class ETF Value Strategy” (SACEVS) now show preliminary positions for February 2018. For SACEMS, past returns for the first and second positions and for the third and fourth positions are close, such that rankings could change by the close. For SACEVS, allocations are unlikely to change by the close.

An anomaly in the source data surfaced this month. Returns for December 2017 for dividend-paying ETFs changed between the end of December 2017 and the end of January 2018. It appears that data available as of the December market close did not account for dividend ex-dates during December. This anomaly has two implications:

  1. December 2017 returns previously reported for SACEMS and SACEVS (and alternatives using dividend paying ETFs) were too low. We are correcting these returns.
  2. More seriously, incorporation of December 2017 dividends causes a change in the SACEMS top three winners for December 2017, which we determine based on total returns. Since the historical SACEMS performance we present is based on fully updated backtests, the data anomaly introduces a disconnect between backtest and live portfolio performances. In this case, the backtest performs better than a live portfolio. If this issue recurs, we will consider other data management approaches.

Recall the prior data instability reported in “Simple Asset Class ETF Momentum Strategy Data Changes”. Over the long run, data instability issues may cancel with respect to live portfolio performance.

Momentum Investing in a Nutshell?

How, in a nutshell, do momentum investing strategies work? In his December 2017 paper entitled “Keep Up the Momentum”, Thierry Roncalli summarizes the nature of the momentum premium in a less mathematical way than in the previously available “Understanding the Momentum Risk Premium: An In-Depth Journey Through Trend-Following Strategies”. He distinguishes between:

  • Time-series or trend-following or intrinsic or absolute momentum (long assets with a positive past trend and short assets with a negative past trend).
  • Cross-sectional or relative or winners-minus-losers momentum (long assets that have outperformed and short assets that have underperformed relative to each other).

Based on mathematical derivations and prior research, he concludes that: Keep Reading

Sticky SACEMS

Subscribers have suggested an alternative approach for the “Simple Asset Class ETF Momentum Strategy” (SACEMS) designed to suppress trading by holding past winners until they fall further in the rankings than in the baseline specification. SACEMS each month picks winners from the following set of exchange-traded funds (ETF) based on total returns over a specified lookback interval:

PowerShares DB Commodity Index Tracking (DBC)
iShares MSCI Emerging Markets Index (EEM)
iShares MSCI EAFE Index (EFA)
SPDR Gold Shares (GLD)
iShares Russell 2000 Index (IWM)
SPDR S&P 500 (SPY)
iShares Barclays 20+ Year Treasury Bond (TLT)
Vanguard REIT ETF (VNQ)
3-month Treasury bills (Cash)

There are three versions of SACEMS: (1) top one of the nine ETFs (Top 1); (2) equally weighted top two (EW Top 2); and, (3) equally weighted top three (EW Top 3). To test the suggestion, we specify three “sticky” versions of SACEMS as follows:

  1. Top 1 Sticky – retains the past winner until it drops out of the top 2.
  2. EW Top 2 Sticky – retains past winners until they drop out of the top 3.
  3. EW Top 3 Sticky – retains past winners until they drop out of the top 4.

We compare sticky and baseline strategies using the tabular performance statistics used for the baseline. Using monthly total (dividend-adjusted) returns for the specified assets during February 2006 (limited by DBC) through December 2017, we find that:

Keep Reading

Categorization of Risk Premiums

What is the best way to think about reliabilities and risks of various anomaly premiums commonly that investors believe to be available for exploitation? In their December 2017 paper entitled “A Framework for Risk Premia Investing”, Kari Vatanen and Antti Suhonen present a framework for categorizing widely accepted anomaly premiums to facilitate construction of balanced investment strategies. They first categorize each premium as fundamental, behavioral or structural based on its robustness as indicated by clarity, economic rationale and capacity. They then designate each premium in each category as either defensive or offensive depending on whether it is feasible as long-only or requires short-selling and leverage, and on its return skewness and tail risk. Based on expected robustness and riskiness of selected premiums as described in the body of research, they conclude that: Keep Reading

SACEVS-SACEMS Leverage Sensitivity Tests

“SACEVS with Margin” investigates the use of target 2X leverage via margin to boost the performance of the “Simple Asset Class ETF Value Strategy” (SACEVS). “SACEMS with Margin” investigates the use of target 2X leverage via margin to boost the performance of the “Simple Asset Class ETF Momentum Strategy” (SACEMS). In response, a subscriber requested a sensitivity test of 1.25X, 1.50X and 1.75X leverage targets. To investigate effects of these leverage targets, we separately augment SACEVS Best Value, SACEMS EW Top 3 and the equally weighted combination of these two strategies by: (1) initially applying target leverage via margin; (2) for each month with a positive portfolio return, adding margin at the end of the month to restore target leverage; and, (3) for each month with a negative portfolio return, liquidating shares at the end of the month to pay down margin and restore target leverage. Margin rebalancings are concurrent with portfolio reformations. We focus on gross monthly Sharpe ratiocompound annual growth rate (CAGR) and maximum drawdown (MaxDD) for committed capital as key performance statistics. We use the 3-month Treasury bill (T-bill) yield as the risk-free rate. Using monthly total (dividend-adjusted) returns for the specified assets since July 2002 for SACEVS and since July 2006 for SACEMS, both through December 2017, we find that:

Keep Reading

Volatility Scaling for Momentum Strategies?

What is the best way to implement futures momentum and manage its risk? In their November 2017 paper entitled “Risk Adjusted Momentum Strategies: A Comparison between Constant and Dynamic Volatility Scaling Approaches”, Minyou Fan, Youwei Li and Jiadong Liu compare performances of five futures momentum strategies and two benchmarks:

  1. Cross-sectional, or relative, momentum (XSMOM) – each month long (short) the equally weighted tenth of futures contract series with the highest (lowest) returns over the past six months.
  2. XSMOM with constant volatility scaling (CVS) – each month scales the XSMOM portfolio by the ratio of a 12% target volatility to annualized realized standard deviation of daily XSMOM portfolio returns over the past six months.
  3. XSMOM with dynamic volatility scaling (DVS) – each month scales the XSMOM portfolio by the the ratio of next-month expected market return (a function of realized portfolio volatility and whether MSCI return over the last 24 months is positive or negative) to realized variance of XSMOM portfolio daily returns over the past six months.
  4. Time-series, or intrinsic, momentum (TSMOM) – each month long (short) the equally weighted futures contract series with positive (negative) returns over the past six months.
  5. TSMOM with time-varying volatility scaling (TSMOM Scaled) – each month scales the TSMOM portfolio by the ratio of 22.6% (the volatility of an equally weighted portfolio of all future series) to annualized exponentially weighted variance of TSMOM returns over the past six months.
  6. Equally weighted, monthly rebalanced portfolio of all futures contract series (Buy-and-Hold).
  7. Buy-and-Hold with time-varying volatility scaling (Buy-and-Hold Scaled) – each month scales the Buy-and-Hold portfolio as for TSMOM Scaled.

They test these strategies on a multi-class universe of 55 global liquid futures contract series, starting when at least 45 series are available in November 1991. They focus on average annualized gross return, annualized volatility, annualized gross Sharpe ratio, cumulative return and maximum (peak-to-trough) drawdown (MaxDD) as comparison metrics. Using monthly prices for the 55 futures contract series (24 commodities, 13 government bonds, 9 currencies and 9 equity indexes) during June 1986 through May 2017, they find that:

Keep Reading

Live Test of Sophisticated Long-only Stock Momentum Investing

How efficiently can a sophisticated fund manager implement long-only stock momentum portfolios? In their December 2017 paper entitled “Implementing Momentum: What Have We Learned?”, Adrienne Ross, Tobias Moskowitz, Ronen Israel and Laura Serban use seven years of live data for long-only U.S. and international momentum funds to measure the import of implementation frictions. They segment these frictions into turnover/trading costs, tax impacts and mitigating portfolio construction choices. The underlying momentum strategies converge on the top third of stocks based on a combination of market capitalization and momentum signal strength (using multiple measures of momentum), reformed monthly. Portfolio construction employs a transaction cost model to minimize costs by: substituting stocks with similar momentum that are cheaper to trade, trading patiently and employing algorithmic trading rules designed to suppress price impacts of trades. Using detailed trade and performance data for the specified momentum funds during July 9, 2009 through December 31, 2016, they find that: Keep Reading

Login
Daily Email Updates
Filter Research
  • Research Categories (select one or more)