Objective research to aid investing decisions

Value Investing Strategy (Strategy Overview)

Allocations for July 2020 (Final)
Cash TLT LQD SPY

Momentum Investing Strategy (Strategy Overview)

Allocations for July 2020 (Final)
1st ETF 2nd ETF 3rd ETF

Strategic Allocation

Is there a best way to select and weight asset classes for long-term diversification benefits? These blog entries address this strategic allocation question.

Equity Factor Performance During the 2010s

Are equity factors used in leading models of stock returns reliable performers in practice? In his March 2020 paper entitled “Factor Performance 2010-2019: A Lost Decade?”, David Blitz measures performances of factors tracked in the Kenneth French data library and the q-factor model library during 2010-2019 and compares results to their performances in prior decades. Using data from these libraries for 32 U.S. equity factors and six global non-U.S. factors over available sample periods through 2019, he finds that:

Keep Reading

Very Simple Asset Class ETF Momentum Strategy (VSACEMS)

A subscriber requested evaluation of a streamlined version of the Simple Asset Class ETF Momentum Strategy (SACEMS) that considers only three exchange-traded funds (ETF):

  • SPDR S&P 500 (SPY)
  • iShares Barclays 20+ Year Treasury Bond (TLT)
  • iShares iBoxx $ Investment Grade Corporate Bond (LQD)

To evaluate, we test a strategy that each month picks the one of these ETFs with the highest total return over a set momentum ranking (lookback) interval. We call the strategy Very SACEMS (VSACEMS) Top 1. We consider lookback intervals of one to 12 months. We then select one of these lookback intervals and generate the same performance statistics as for SACEMS. We consider three benchmarks:

  1. SPY – buy and hold SPY.
  2. SPY:SMA10 Cash – Hold SPY (3-month U.S. Treasury bills) when SPY is above (below) its 10-month simple moving average (SMA10) at the end of the prior month.
  3. SPY:SMA10 TLT – Hold SPY (TLT) when SPY is above (below) its SMA10 at the end of the prior month.

Using monthly dividend-adjusted prices for the above three assets during July 2002 (limited by TLT and LQD) through February 2020, we find that: Keep Reading

SACEMS with SMA Filter

A subscriber asked whether applying a simple moving average (SMA) filter to “Simple Asset Class ETF Momentum Strategy” (SACEMS) winners improves strategy performance. SACEMS each months picks winners from among the a set of eight asset class exchange-traded fund (ETF) proxies plus cash based on past returns over a specified interval. Since many technical traders use a 10-month SMA (SMA10), we test effectiveness of requiring that each winner pass an SMA10 filter by comparing performances for three scenarios:

  1. Baseline – SACEMS as presented at “Momentum Strategy”.
  2. With SMA10 Filter – Run Baseline SACEMS and then apply SMA10 filters to dividend-adjusted prices of winners. If a winner is above (below) its SMA10, hold the winner (Cash). This rule is inapplicable to Cash as a winner.
  3. With Half SMA10 Filter – Same as scenario 2, but, if a winner is above (below) its SMA10, hold the winner (half the winner and half cash).

We focus on compound annual growth rates (CAGR), annual Sharpe ratios and maximum drawdowns (MaxDD) of SACEMS Top 1, equally weighted (EW) Top 2 and EW Top 3 portfolios. To calculate Sharpe ratios, we use average monthly 3-month U.S. Treasury bill (T-bill) yield during a year as the risk-free rate for that year. Using monthly dividend-adjusted closing prices for the asset class proxies and the (T-bill) yield for Cash over the period February 2006 through February 2020, we find that: Keep Reading

COVID-19 Crash Questions

Subscribers are posing questions about the 2019 coronavirus (COVID-19) as a driver of current market conditions that are difficult to address with evidence-based analyses. Here are some questions and thoughts: Keep Reading

Combining the Smart Money Indicator with SACEMS and SACEVS

“Verification Tests of the Smart Money Indicator” reports performance results for a specific version of the Smart Money Indicator (SMI) stocks-bonds timing strategy, which exploits differences in futures and options positions in the S&P 500 Index, U.S. Treasury bonds and 10-year U.S. Treasury notes between institutional investors (smart money) and retail investors (dumb money). Do these sentiment-based results diversify those for the Simple Asset Class ETF Momentum Strategy (SACEMS) and the Simple Asset Class ETF Value Strategy (SACEVS)? To investigate, we look at correlations of annual returns between variations of SMI (no lag between signal and execution, 1-week lag and 2-week lag) and each of SACEMS equal-weighted (EW) Top 3 and SACEVS Best Value. We then look at average gross annual returns, standard deviations of annual returns and gross annual Sharpe ratios for the individual strategies and for equal-weighted, monthly rebalanced portfolios of the three strategies. Using gross annual returns for the strategies during 2008 through 2019, we find that: Keep Reading

SACEVS and SACEMS from a European Perspective

A European subscriber asked about the effect of the dollar-euro exchange rate on the Simple Asset Class ETF Value Strategy (SACEVS) and the Simple Asset Class ETF Momentum Strategy (SACEMS). To investigate, we each month adjust the gross returns for these strategies for the change in the dollar-euro exchange rate that month. We consider all strategy variations: Best Value and Weighted for SACEVS; and, Top 1, equally weighted (EW) Top 2 and EW Top 3 for SACEVS. We focus on SACEVS Best Value and SACEMS EW Top 3. We consider effects on four gross performance metrics: average monthly return; standard deviation of monthly returns; compound annual growth rate (CAGR); and, maximum drawdown (MaxDD). Using monthly returns for the strategies and monthly changes in the dollar-euro exchange rate since August 2002 for SACEVS and since July 2006 for SACEMS, both through January 2020, we find that: Keep Reading

Effects of Execution Delay on SACEVS

How does execution delay affect the performance of the Best Value and Weighted versions of the “Simple Asset Class ETF Value Strategy” (SACEVS)? These strategies each month allocate funds to the following asset class exchange-traded funds (ETF) according to valuations of term, credit and equity risk premiums, or to cash if no premiums are undervalued:

3-month Treasury bills (Cash)
iShares 20+ Year Treasury Bond (TLT)
iShares iBoxx $ Investment Grade Corporate Bond (LQD)
SPDR S&P 500 (SPY)

To investigate, we compare 22 variations of each strategy with execution days ranging from end-of-month (EOM) per the baseline strategy to 21 trading days after EOM (EOM+21). For example, an EOM+5 variation computes allocations based on EOM but delays execution until the close five trading days after EOM. We include a benchmark that each month allocates 60% to SPY and 40% to TLT (60-40) to see whether variations are unique to SACEVS. We focus on gross compound annual growth rate (CAGR), maximum drawdown (MaxDD) and annual Sharpe ratio as key performance statistics. Using daily dividend-adjusted closes for the above ETFs from the end of July 2002 through January 2020, we find that:

Keep Reading

Testing the All Weather Portfolio

A subscriber requested a test of Ray Dalio‘s All Weather (AW) portfolio with different rebalancing frequencies, allocated to exchange-traded funds (ETF) as asset class proxies as follows:

30% – Vanguard Total Stock Market (VTI)
40% – iShares 20+ Year Treasury (TLT)
15% – iShares 7-10 Year Treasury (IEF)
7.5% – SPDR Gold Shares (GLD)
7.5% – Invesco DB Commodity Tracking (DBC)

To investigate, we test:

We consider the following gross performance metrics, all based on monthly measurements: average monthly return, standard deviation of monthly returns, compound annual growth rate (CAGR), maximum drawdown (MaxDD) and Sharpe ratio (with the 3-month Treasury bill yield as the risk-free rate). We also compare number of rebalance actions for each portfolio. Using monthly dividend-adjusted returns for the specified assets during February 2006 (limited by DBC) through January 2020), we find that: Keep Reading

Reducing Downside Risk of Trend Following Strategies

How can investors suppress the downside of trend following strategies? In their July 2019 paper entitled “Protecting the Downside of Trend When It Is Not Your Friend”, flagged by a subscriber, Kun Yan, Edward Qian and Bryan Belton test ways to reduce downside risk of simple trend following strategies without upside sacrifice. To do so, they: (1) add an entry/exit breakout rule to a past return signal to filter out assets that are not clearly trending; and, (2) apply risk parity weights to assets, accounting for both their volatilities and correlations of their different trends. Specifically, they each month:

  • Enter a long (short) position in an asset only if the sign of its past 12-month return is positive (negative), and the latest price is above (below) its recent n-day minimum (maximum). Baseline value for n is 200.
  • Exit a long (short) position in an asset only if the latest price trades below (above) its recent n/2-day minimum (maximum), or the 12-month past return goes negative (positive).
  • Assign weights to assets that equalize respective risk contributions to the portfolio based on both asset volatility and correlation structure, wherein covariances among assets adapt to whether an asset is trending up or down. They calculate covariances based on monthly returns from an expanding (inception-to-date) window with baseline 2-year half-life exponential decay.
  • Impose a 10% annual portfolio volatility target.

Their benchmark is a simpler strategy that uses only past 12-month return for trend signals and inverse volatility weighting with annual volatility target 40% for each asset. Their asset universe consists of 66 futures/forwards. They roll futures to next nearest contracts on the first day of the expiration month. They calculate returns to currency forwards using spot exchange rates adjusted for carry. Using daily prices for 23 commodity futures, 13 equity index futures, 11 government bond futures and 19 developed and emerging markets currency forwards as available during August 1959 through December 2017, they find that: Keep Reading

Optimizing the Combination of Economic Growth and Price Trends

Does combining an economic growth variable trend with an asset price trend improve the power to predict stock market return? What is the best way to use such a combination signal? In his December 2019 paper entitled “Growth-Trend Timing and 60-40 Variations: Lethargic Asset Allocation (LAA)”, Wouter Keller investigates variations in a basic Growth-Trend timing strategy (GT) that is bullish and holds the broad U.S. stock market unless both: (1) the U.S. unemployment rate is below its 12-month simple moving average (SMA12); and, (2) the S&P 500 Index is below its SMA10. When both SMAs trend downward, GT is bearish and holds cash. Specifically, he looks at:

  • Basic GT versus a traditional 60-40 stocks-bonds portfolio, rebalanced monthly, with stocks proxied by actual/modeled SPY and bonds/cash proxied by actual/modeled IEF.
  • Improving basic GT, especially maximum drawdown (MaxDD), by replacing assets with equal-weighted, monthly rebalanced portfolios with various component selections. His ultimate portfolio is the Lethargic Asset Allocation (LAA), optimized in-sample based on Ulcer Performance Index (UPI) during February 1949 through June 1981 (mostly rising interest rates) and tested out-of-sample during July 1981 through October 2019 (mostly falling interest rates).

He considers two additional benchmarks: GT applied to the Permanent portfolio (25% allocations to each of SPY, GLD, BIL and TLT) and GT applied to the Golden Butterfly portfolio (20% to each of SPY, IWN, GLD, SHY and TLT). He applies 0.1% one-way trading frictions in all tests. Using monthly unemployment rate since January 1948 and actual/modeled monthly returns for ETFs as specified since February 1949, all through October 2019, he finds that: Keep Reading

Login
Daily Email Updates
Filter Research
  • Research Categories (select one or more)