Objective research to aid investing decisions
Menu
Value Allocations for Apr 2019 (Final)
Cash TLT LQD SPY
Momentum Allocations for Apr 2019 (Final)
1st ETF 2nd ETF 3rd ETF

Strategic Allocation

Is there a best way to select and weight asset classes for long-term diversification benefits? These blog entries address this strategic allocation question.

U.S. Equity Turn-of-the-Month as a Diversifying Portfolio

Is the U.S. equity turn-of-the-month (TOTM) effect exploitable as a diversifier of other assets? In their October 2018 paper entitled “A Seasonality Factor in Asset Allocation”, Frank McGroarty, Emmanouil Platanakis, Athanasios Sakkas and Andrew Urquhart test U.S. asset allocation strategies that include a TOTM portfolio as an asset. The TOTM portfolio buys each stock at the open on the last trading day of each month and sells at the close on the third trading day of the following month, earning zero return the rest of the time. They consider four asset universes with and without the TOTM portfolio:

  1. A conventional stocks-bonds mix.
  2. The equity market portfolio.
  3. The equity market portfolio, a small size portfolio and a value portfolio.
  4. The equity market portfolio, a small size portfolio, a value portfolio and a momentum winners portfolio.

They consider six sophisticated asset allocation methods:

  1. Mean-variance optimization.
  2. Optimization with higher moments and Constant Relative Risk Aversion.
  3. Bayes-Stein shrinkage of estimated returns.
  4. Bayesian diffuse-prior.
  5. Black-Litterman.
  6. A combination of allocation methods.

They consider three risk aversion settings and either a 60-month or a 120-month lookback interval for input parameter measurement. To assess exploitability, they set trading frictions at 0.50% of traded value for equities and 0.17% for bonds. Using monthly data as specified above during July 1961 through December 2015, they find that:

Keep Reading

Retirement Withdrawal Modeling with Actuarial Longevity and Stock Market Mean Reversion

How does use of actuarial estimates of retiree longevity and empirical mean reversion of stock market returns affect estimated retirement portfolio success rates? In the October 2018 revision of his paper entitled “Joint Effect of Random Years of Longevity and Mean Reversion in Equity Returns on the Safe Withdrawal Rate in Retirement”, Donald Rosenthal presents a model of safe inflation-adjusted retirement portfolio withdrawal rates that addresses: (1) uncertainty about the number of years of retirement (rather than the commonly assumed 30 years); and, (2) mean reversion in annual U.S. stock market returns (rather than a random walk). He estimates retirement longevity as a random input based on the Social Security Administration’s 2015 Actuarial Life Table. He estimates stock market real returns and measures their mean reversion using S&P 500 Index inflation-adjusted total annual returns during 1926 through 2017. He models real bond returns using 10-year U.S. Treasury note (T-note) total annual returns during 1928 through 2017. He applies Monte Carlo simulations (3,000 trials for each scenario) to assess retirement portfolio performance by:

  • Assuming an initial retirement portfolio either 100% invested in stocks or 60%/40% in stocks/T-notes (rebalanced at each year-end).
  • Debiting the portfolio each year-end by a fixed, inflation-adjusted percentage of the initial amount.
  • Calculating percentage of simulation trials for which the portfolio is not exhausted before death (success) and average portfolio terminal balance for successful trials.

He considers two benchmarks: (1) no stock market mean reversion (random walk) and fixed 30-year retirement; and, (2) no stock market mean reversion and actuarial estimate of retirement duration. He also runs sensitivity tests to see how changes in assumptions affect success rate. Using the specified data, he finds that:

Keep Reading

SACEVS Input Risk Premiums and EFFR

The “Simple Asset Class ETF Value Strategy” (SACEVS) seeks diversification across a small set of asset class exchanged-traded funds (ETF), plus a monthly tactical edge from potential undervaluation of three risk premiums:

  1. Term – monthly difference between the 10-year Constant Maturity U.S. Treasury note (T-note) yield and the 3-month Constant Maturity U.S. Treasury bill (T-bill) yield.
  2. Credit – monthly difference between the Moody’s Seasoned Baa Corporate Bonds yield and the T-note yield.
  3. Equity – monthly difference between S&P 500 operating earnings yield and the T-note yield.

Premium valuations are relative to historical averages. How might this strategy react to increases in the Effective Federal Funds Rate (EFFR)? Using end-of-month values of the three risk premiums, EFFRtotal 12-month U.S. inflation and core 12-month U.S. inflation during March 1989 (limited by availability of operating earnings data) through September 2018, we find that: Keep Reading

Add REITs to SACEVS?

What happens if we extend the “Simple Asset Class ETF Value Strategy” (SACEVS) with a real estate risk premium, derived from the yield on equity Real Estate Investment Trusts (REIT), represented by the FTSE NAREIT Equity REITs Index? To investigate, we apply the SACEVS methodology to the following asset class exchange-traded funds (ETF), plus cash:

3-month Treasury bills (Cash)
iShares 20+ Year Treasury Bond (TLT)
iShares iBoxx $ Investment Grade Corporate Bond (LQD)
SPDR Dow Jones REIT (RWR) through September 2004 dovetailed with Vanguard REIT ETF (VNQ) thereafter
SPDR S&P 500 (SPY)

This set of ETFs relates to four risk premiums, as specified below: (1) term; (2) credit (default); (3) real estate; and, (4) equity. We focus on the effects of adding the real estate risk premium on Compound annual growth rates (CAGR) and Maximum drawdowns (MaxDD) of the Best Value (picking the most undervalued premium) and Weighted (weighting all undervalued premiums according to degree of undervaluation) versions of SACEVS. Using lagged quarterly S&P 500 earnings, monthly S&P 500 Index levels and monthly yields for 3-month U.S. Treasury bill (T-bill), the 10-year Constant Maturity U.S. Treasury note (T-note), Moody’s Seasoned Baa Corporate Bonds and FTSE NAREIT Equity REITs Index during March 1989 through August 2018 (limited by availability of earnings data), and monthly dividend-adjusted closing prices for the above asset class ETFs during July 2002 through August 2018 (194 months, limited by availability of TLT and LQD), we find that: Keep Reading

A Few Notes on Muscular Portfolios

Brian Livingston introduces his 2018 book, Muscular Portfolios: The Investing Revolution for Superior Returns with Lower Risk, as follows: “What we laughingly call the financial ‘services’ industry is a cesspool filled with sharks intent on siphoning your money away and making it their own. The good news is that it is absolutely possible to grow your savings with no fear of financial sharks or stock market crashes. In the past few years, we’ve seen an explosion of low-cost index funds, along with serious mathematical breakthroughs in how to combine these funds into low-risk portfolios. …This book shows you how.  …You can start with just a little money and make it grow.” Based on research from multiple sources and extensions of that research, he concludes that: Keep Reading

SACEMS with Different Alternatives for “Cash”

Do alternative “Cash” (deemed risk-free) instruments materially affect performance of the“Simple Asset Class ETF Momentum Strategy” (SACEMS)? Changing the proxy for Cash can affect how often the model selects Cash, as well as the return on Cash when selected. To investigate, we test separately each of the following yield and exchange-traded funds (ETF) as the risk-free asset:

3-month Treasury bills (Cash), a proxy for the money market as in base SACEMS
SPDR Bloomberg Barclays 1-3 Month T-Bill (BIL)
iShares 1-3 Year Treasury Bond (SHY)
iShares 7-10 Year Treasury Bond (IEF)
iShares TIPS Bond (TIP)

In other words, we add one of the five risk-free assets to the following base set of eight ETFs:

PowerShares DB Commodity Index Tracking (DBC)
iShares MSCI Emerging Markets Index (EEM)
iShares MSCI EAFE Index (EFA)
SPDR Gold Shares (GLD)
iShares Russell 2000 Index (IWM)
SPDR S&P 500 (SPY)
iShares Barclays 20+ Year Treasury Bond (TLT)
Vanguard REIT ETF (VNQ)

We focus on the equally weighted (EW) EW Top 3 SACEMS portfolio and consider all performance metrics used for base SACEMS. Using end-of-month total (dividend-adjusted) returns for the specified assets during February 2006 (except May 2007 for BIL) through July 2018, we find that:

Keep Reading

SACEMS Applied to Mutual Funds

A subscriber inquired whether a longer test of the “Simple Asset Class ETF Momentum Strategy” (SACEMS) is feasible using mutual funds rather than exchange-traded funds (ETF) as asset class proxies. To investigate, we consider the following set of mutual funds (partly adapted from the paper summarized in “Asset Allocation Combining Momentum, Volatility, Correlation and Crash Protection”):

Oppenheimer Commodity Strategy Total Return A (QRAAX) until its discontinuation in mid-2016, and PIMCO CommoditiesPLUS Strategy (PCPSX) thereafter.
Vanguard Emerging Markets Stock Index Investor Shares (VEIEX)
Fidelity Diversified International (FDIVX)
First Eagle Gold A (SGGDX)
Vanguard Total Stock Market Index Investor Shares (VTSMX)
Vanguard Small Capitalization Index Investor Shares  (NAESX)
Vanguard REIT Index Investor Shares (VGSIX)
Vanguard Long-Term Treasury Investor Shares (VUSTX)
3-month Treasury bills (Cash)

We rank mutual funds based on total (dividend-adjusted) returns over past (lookback) intervals of one to 12 months. We consider portfolios of past mutual fund winners based on Top 1 and on equally weighted (EW) Top 2 through Top 5. We consider as benchmarks: an equally weighted portfolio of all mutual funds, rebalanced monthly (EW All); buying and holding VTSMX; and, holding VTSMX when the S&P 500 Index is above its 10-month simple moving average (SMA10) and Cash when the index is below its SMA10 (VTSMX:SMA10). Using monthly dividend-adjusted closing prices for the above mutual funds and the yield for Cash during March 1997 through July 2018 (269 months), we find that: Keep Reading

“Current High” Boost for SACEMS?

A subscriber asked whether applying a filter that restricts monthly asset selections of the “Simple Asset Class ETF Momentum Strategy” (SACEMS) to those currently at an intermediate-term high improves performance. This strategy each month reforms a portfolio of winners from the following universe based on total return over a specified lookback interval:

PowerShares DB Commodity Index Tracking (DBC)
iShares MSCI Emerging Markets Index (EEM)
iShares MSCI EAFE Index (EFA)
SPDR Gold Shares (GLD)
iShares Russell 2000 Index (IWM)
SPDR S&P 500 (SPY)
iShares Barclays 20+ Year Treasury Bond (TLT)
Vanguard REIT ETF (VNQ)
3-month Treasury bills (Cash)

To investigate, we focus on the equally weighted (EW) Top 3 SACEMS portfolio and replace any selection not at an intermediate-term high with Cash. We define intermediate-term high based on monthly closes over a specified past interval ranging from one month to six months. We consider all gross performance metrics used for base SACEMS. Using monthly dividend adjusted closing prices for the asset class proxies and the yield for Cash over the period February 2006 (the earliest all ETFs are available) through July 2018 (150 months), we find that: Keep Reading

A Few Notes on Heads I Win, Tails You Lose

Patrick Donohoe introduces his 2018 book, Heads I Win, Tails You Lose: A Financial Strategy to Reignite the American Dream, by stating that the book: “…will teach you many of the principles and strategies to help discover your own path to financial freedom. Most importantly, it will show you the mindset required to carry out a successful plan. …almost everything you will gain from this book conflicts with what the typical financial planner, financial celebrity, and most financial publications tell you to do. …You will…discover how to pivot the foundation of your wealth to…the private mutual insurance company.” Based on his experience, market research and many examples, he concludes that: Keep Reading

Multi-class Momentum Portfolio with “Canary” Crash Protection

Is it suboptimal to employ the same asset class proxy universe both to exploit momentum and to avoid crashes? In their July 2018 paper entitled Breadth Momentum and the Canary Universe: Defensive Asset Allocation (DAA)”, Wouter Keller and Jan Willem Keuning modify their Vigilant Asset Allocation (VAA) by substituting a separate “canary” asset class universe for crash protection based on breadth momentum (percentage of assets advancing). VAA is a dual momentum asset class strategy specifying momentum as the average of annualized total returns over the past 1, 3, 6 and 12 months, implemented as follows:

  1. Each month rank asset class proxies based on momentum.
  2. Each month select a “cash” holding as the one of short-term U.S. Treasury, intermediate-term U.S. Treasury and investment grade corporate bond funds with the highest momentum. 
  3. Set (via backtest) a breadth protection threshold (B). When the number of asset class proxies with negative momentum (b) is equal to or greater than B, the allocation to “cash” is 100%. When b is less than B, the base allocation to “cash” is b/B.
  4. Set (via backtest) the number of top-performing asset class proxies to hold (T) in equal weights. When the base allocation to “cash” is less than 100% (so when b<B), allocate the balance to the top (1-b/B)T asset class proxies with highest momentum (irrespective of sign).
  5. Mitigate portfolio rebalancing intensity (when B and T are different) by rounding fractions b/B to multiples of 1/T.

DAA replaces step 3 with breadth protection calculated the same way but based on a separate, simpler asset universe, selected experimentally from pre-1971 data based on a unique indicator that that combines compound annual growth rate (R) and maximum drawdown (D). The aim of DAA is to lower the average cash allocation fraction compared to VAA while preserving crash protection. They describe assets in terms of existing exchange-traded funds (ETF) but use best available matching indexes prior to ETF inceptions. Using monthly return data for alternative canary assets during 1926-1970, for backtest (in-sample) DAA universe parameter optimization during 1971-1993 and for out-of-sample DAA universe testing during 1994 through March 2018, they find that: Keep Reading

Daily Email Updates
Login
Research Categories
Recent Research
Popular Posts