Strategic Allocation

Is there a best way to select and weight asset classes for long-term diversification benefits? These blog entries address this strategic allocation question.

Page 1 of 1312345678910...Last »

Realistic Long-short Strategy Performance

How well do long-short stock strategies work, after accounting for all costs? In their February 2014 paper entitled “Assessing the Cost of Accounting-Based Long-Short Trades: Should You Invest a Billion Dollars in an Academic Strategy?”, William Beaver, Maureen McNichols and Richard Price examine the net attractiveness of several long-short strategies as stand-alone investments (as for a hedge fund) and as diversifiers of the market portfolio. They also consider long-only versions of these strategies. Specifically, they consider five anomalies exposed by the extreme tenths (deciles) of stocks sorted by:

  1. Book-to-Market ratio (BM) measured annually.
  2. Operating Cash Flow (CF) measured annually as a percentage of average assets.
  3. Accruals (AC) measured annually as earnings minus cash flow as a percentage of average assets.
  4. Unexpected Earnings (UE) measured as year-over-year percentage change in quarterly earnings.
  5. Change in Net Operating Assets (ΔNOA) measured annually as a percentage of average assets.

For strategies other than UE, they reform strategy portfolios (long the “good” decile and short the “bad” decile) annually at the end of April using accounting data from the prior fiscal year. For UE, they reform the portfolio at the ends of March, June, September and December using prior-quarter data. They highlight cost of capital, financing costs and rebates received on short positions, downside risk and short-side contribution to performance. They assume that the same amount of capital supports either a long-only portfolio, or a portfolio with equal long and short sides (with the long side satisfying Federal Reserve Regulation T collateral requirements for the short side). They account for shorting costs as fees for initiating short positions plus an ongoing collateral rate set at least as high as the federal funds rate, offset by a rebate of 0.25% per year interest on short sale proceeds. They estimate stock trading costs as the stock-by-stock percentage bid-ask spread. They consider two samples (including delistings): (1) all U.S. listed stocks; and, (2) the 20% of stocks with the largest market capitalizations. Using accounting data as described above for all non-ADR firms listed on NYSE, AMEX and NASDAQ for fiscal years 1992 through 2011, and associated monthly stock returns during May 1993 through April 2013, they find that: Keep Reading

Add Stop-loss to Asset Class Momentum Strategy?

In response to “Stop-losses to Avoid Stock Momentum Crashes?”, a subscriber inquired whether a stop-loss rule would improve the performance of the “Simple Asset Class ETF Momentum Strategy”. This strategy each month allocates all funds to the one of the following eight asset class exchange-traded funds (ETF), or cash, with the highest total return over the past five months (designated the 5-1 strategy):

PowerShares DB Commodity Index Tracking (DBC)
iShares MSCI Emerging Markets Index (EEM)
iShares MSCI EAFE Index (EFA)
SPDR Gold Shares (GLD)
iShares Russell 1000 Index (IWB)
iShares Russell 2000 Index (IWM)
SPDR Dow Jones REIT (RWR)
iShares Barclays 20+ Year Treasury Bond (TLT)
3-month Treasury bills (Cash)

To investigate, we add to this strategy a stop-loss rule that: (1) exits the current winner ETF if its intra-month return falls below a specified threshold; and, (2) re-enters the basic strategy by buying the next winner ETF at the end of the month. Using monthly dividend-adjusted/split-adjusted monthly lows and closes for the asset class proxies and the yield for Cash during July 2002 (or inception if not available then) through March 2014 (141 months), we find that: Keep Reading

Simple Asset Class Leveraged ETF Momentum Strategy

Subscribers have asked whether substituting leveraged exchange-traded funds (ETF) in the “Simple Asset Class ETF Momentum Strategy” might enhance performance. To investigate, we execute the strategy with the following eight 2X leveraged ETFs, plus cash:

ProShares Ultra DJ-UBS Commodity (UCD)
ProShares Ultra MSCI Emerging Markets (EET)
ProShares Ultra MSCI EAFE (EFO)
ProShares Ultra Gold (UGL)
ProShares Ultra S&P500 (SSO)
ProShares Ultra Russell 2000 (UWM)
ProShares Ultra Real Estate (URE)
ProShares Ultra 20+ Year Treasury (UBT)
3-month Treasury bills (Cash)

We allocate all funds at the end of each month to the asset class leveraged ETF or cash with the highest total return over the past five months (5-1). Using monthly adjusted closing prices for the specified ETFs and the yield for Cash over the period January 2010 (the earliest month returns for all eight ETFs are available) through January 2014 (only 49 months), we find that: Keep Reading

When Rebalancing Works?

Under what conditions is periodic rebalancing a successful “volatility harvesting” strategy? In his February 2014 paper entitled “Disentangling Rebalancing Return”, Winfried Hallerbach analyzes the return from periodic portfolio rebalancing by decomposing its effects into a volatility return and a dispersion discount. He defines:

  • Rebalancing return as the difference in (geometric) growth rates between periodically rebalanced and buy-and-hold portfolios.
  • Volatility return as the difference in growth rates between a periodically rebalanced portfolio and the equally weighted average growth rate of its component assets.
  • Dispersion discount as the difference in growth rates between a buy-and-hold portfolio and the equally weighted average growth rate of portfolio assets.

Based on mathematical derivations with some approximations, he concludes that: Keep Reading

When (for What) Risk Parity Works

What drives the performance of risk parity asset allocation, and on what asset classes does it therefore work best? In their January 2014 paper entitled “Inter-Temporal Risk Parity: A Constant Volatility Framework for Equities and Other Asset Classes”, Romain Perchet, Raul Leote de Carvalho, Thomas Heckel and Pierre Moulin employ simulations and backtests to explore the conditions/asset classes for which a periodically rebalanced risk parity asset allocation enhances portfolio performance. Specifically, they examine contemporaneous interactions between risk parity performance and each of return-volatility relationship, return volatility clustering and fatness of return distribution tails (kurtosis). They then compare different ways of predicting volatility for risk parity implementation. Finally, they backtest volatility prediction/risk parity allocation effectiveness separately for stock, commodity, high-yield corporate bond, investment-grade corporate bond and government bond indexes (each versus the risk-free asset). They optimize volatility prediction model parameters annually based on an expanding window of historical data. They forecast volatility based on one-year rolling historical daily return dataUsing daily total returns in U.S. dollars for the S&P 500 Index during 1980 through 2012 and for the Russell 1000, MSCI Emerging Market, S&P Commodities, U.S. High Yield Bond, U.S. Corporate Investment Grade Bond and U.S. 10-Year Government Bond indexes and the 3-month U.S. Dollar LIBOR rate (as the risk-free rate) during January 1988 through December 2012, they find that: Keep Reading

Alternative Asset Class ETF Momentum Allocations

A subscriber suggested an alternative to the “Simple Asset Class ETF Momentum Strategy” that weights asset class ETFs according to five-month past return ranking (such as 35-25-20-10-4-3-2-1) rather than allocating all funds to the winner. Do the diversification benefits of this alternative outweigh the loss of momentum purity? To investigate, we return to the following eight asset class exchange-traded funds (ETF), plus cash:

PowerShares DB Commodity Index Tracking (DBC)
iShares MSCI Emerging Markets Index (EEM)
iShares MSCI EAFE Index (EFA)
SPDR Gold Shares (GLD)
iShares Russell 1000 Index (IWB)
iShares Russell 2000 Index (IWM)
SPDR Dow Jones REIT (RWR)
iShares Barclays 20+ Year Treasury Bond (TLT)
3-month Treasury bills (Cash)

As one benchmark, we allocate all funds at the end of each month to the asset class ETF or cash with the highest total return over the past five months (5-1). As another benchmark, we maintain an equal-weighted (EW), monthly rebalanced portfolio of all nine asset classes. As alternatives, we test two momentum rank-weighted (RW), linearly-scaled combinations of all nine classes, one steep across ranks and one shallow. We also test EW combinations of the Top 5, Top 4, Top 3 and Top 2 momentum ranks. Using monthly adjusted closing prices for the asset class proxies and the yield for Cash over the period February 2006 (the earliest all ETFs are available) through December 2013 (only 95 months), we find that: Keep Reading

Simple Asset Class ETF Momentum Strategy Robustness/Sensitivity Tests

How sensitive is the performance of the “Simple Asset Class ETF Momentum Strategy” to selecting ranks other than winners and to choosing a momentum ranking interval other than five months? This strategy each month ranks the following eight asset class exchange-traded funds (ETF), plus cash, on past return and rotates to the strongest class:

PowerShares DB Commodity Index Tracking (DBC)
iShares MSCI Emerging Markets Index (EEM)
iShares MSCI EAFE Index (EFA)
SPDR Gold Shares (GLD)
iShares Russell 1000 Index (IWB)
iShares Russell 2000 Index (IWM)
SPDR Dow Jones REIT (RWR)
iShares Barclays 20+ Year Treasury Bond (TLT)
3-month Treasury bills (Cash)

Available data are so limited that sensitivity test results may mislead. With that reservation, we perform two robustness/sensitivity tests: (1) comparison of returns for all nine ranks of winner through loser based on a ranking interval of five months and a holding interval of one month (5-1); and, (2) comparison of winner returns for ranking intervals ranging from one to 12 months (1-1 through 12-1) and for a six-month lagged six-month ranking interval (12:7-1) per “Isolating the Decisive Momentum (Echo?)”, all with one-month holding intervals. Using monthly adjusted closing prices for the asset class proxies and the yield for Cash over the period July 2002 (or inception if not available then) through December 2013 (138 months), we find that: Keep Reading

Simple Asset Class ETF Momentum Strategy

Does a simple momentum strategy applied to tradable asset class proxies produce attractive results? To investigate, we test a simple strategy on the following eight asset class exchange-traded funds (ETF), plus cash:

PowerShares DB Commodity Index Tracking (DBC)
iShares MSCI Emerging Markets Index (EEM)
iShares MSCI EAFE Index (EFA)
SPDR Gold Shares (GLD)
iShares Russell 1000 Index (IWB)
iShares Russell 2000 Index (IWM)
SPDR Dow Jones REIT (RWR)
iShares Barclays 20+ Year Treasury Bond (TLT)
3-month Treasury bills (Cash)

This set of ETFs: (1) offers opportunities to capture momentum across U.S., non-U.S. developed and emerging equity markets, large and small U.S. equities and bonds and commodities; (2) offers gold and cash as safe havens; (3) offers histories long enough for backtesting across multiple market environments; and, (4) keeps it simple in recognition of the trade-off between number of ETFs and trading frequency. We allocate all funds at the end of each month to the asset class ETF or cash with the highest total return over the past five months (5-1). The five-month ranking period is optimal based on sensitivity tests. Using monthly adjusted closing prices for the asset class proxies and the yield for Cash during July 2002 (or inception if not available then) through December 2013 (138 months), we find that: Keep Reading

Tactical, Simplified, Long-only MPT with Momentum

Is there a tractable way to combine momentum investing with Modern Portfolio Theory (MPT)? In their December 2013 paper entitled “Tactical MPT and Momentum: the Modern Asset Allocation (MAA)”, Wouter Keller and Hugo van Putten present a tactical, simplified, long-only version of MPT that applies momentum to estimate future asset returns. Specifically, they:

  1. Make MPT tactical by using short historical intervals to estimate future asset returns (rate of return, or absolute momentum), return volatilities (based on daily returns) and return correlations (based on daily returns), assuming that behaviors over a short historical interval will materially persist during the next month.
  2. Exclude from the portfolio any assets with negative estimated returns (i.e., negative returns over the specified historical interval).
  3. Simplify correlation calculations by relating daily historical returns for each asset to those for a single index (the equally weighted average returns for all assets) rather than to those for all other assets separately.
  4. Dampen any errors in rapidly changing asset return, volatility and correlation estimates by “shrinking” them toward their respective averages across all assets in the universe, and dampen the predicted market volatility by “shrinking” it toward zero.

They reform the MAA portfolio monthly at the first close. Their baseline historical interval for estimation of all variables is four months (84 trading days). Their baseline shrinkage factor for all variables is 50%. Their benchmark is the equally weighted (EW) “market” of all assets, rebalanced monthly. They assume a one-way trading friction of 0.1%. They consider a range of portfolio performance metrics: annualized return, annual volatility, maximum drawdown, Sharpe ratio, Omega ratio and Calmar ratio. Using daily dividend-adjusted prices for assets allocated to nine universes (of seven to 130 assets, generally consisting of asset class proxy funds) during November 1997 through mid-November 2013, they find that: Keep Reading

Practically Beating a Market-weighted Stock Index?

Is there a simple compromise between easy-to-implement market weights and more diversified equal sector and equal stock weights? In their December 2013 paper entitled “A Simple Diversified Portfolio Strategy”, Bernd Hanke and Garrett Quigley present a stock portfolio construction approach that blends market weights, equal stock weights and equal sector weights. The objectives of the approach (relative to market weights) are: (1) higher returns (by capturing more of the diversification premium); (2) lower risk (via increased diversification); and, (3) competitive capacity and rebalancing frictions (by limiting the tilt toward small, illiquid stocks). In testing this approach, they form and rebalance annually regional (U.S., European and Japanese) portfolios of relatively liquid stocks. They ignore rebalancing frictions. They define sectors via the broadest Global Industry Classification Standard level (ten sectors). Using total (dividend-reinvested) returns, market capitalizations and sector memberships for a broad sample of relatively liquid stocks during January 1992 through March 2013, they find that: Keep Reading

Page 1 of 1312345678910...Last »
Login
Current Momentum Winners

ETF Momentum Signal
for April 2014 (Final)

Momentum ETF Winner

Second Place ETF

Third Place ETF

Gross Momentum Portfolio Gains
(Since August 2006)
Top 1 ETF Top 2 ETFs
217% 197%
Top 3 ETFs SPY
197% 68%
Strategy Overview
Recent Research
Popular Posts
Popular Subscriber-Only Posts