Objective research to aid investing decisions

Value Investing Strategy (Strategy Overview)

Allocations for December 2024 (Final)
Cash TLT LQD SPY

Momentum Investing Strategy (Strategy Overview)

Allocations for December 2024 (Final)
1st ETF 2nd ETF 3rd ETF

Strategic Allocation

Is there a best way to select and weight asset classes for long-term diversification benefits? These blog entries address this strategic allocation question.

SACEMS-SACEVS Diversification with Mutual Funds

“SACEMS-SACEVS for Value-Momentum Diversification” finds that the “Simple Asset Class ETF Value Strategy” (SACEVS) and the “Simple Asset Class ETF Momentum Strategy” (SACEMS) are mutually diversifying. Do longer samples available from “SACEVS Applied to Mutual Funds” and “SACEMS Applied to Mutual Funds” confirm this finding? To check, we look at the following three equal-weighted (50-50) combinations of the two strategies, rebalanced monthly:

  1. SACEVS Best Value paired with SACEMS Top 1 (aggressive value and aggressive momentum).
  2. SACEVS Best Value paired with SACEMS Equally Weighted (EW) Top 3 (aggressive value and diversified momentum).
  3. SACEVS Weighted paired with SACEMS EW Top 3 (diversified value and diversified momentum).

Using monthly gross returns for SACEVS and SACEMS mutual fund portfolios during September 1997 through July 2019, we find that:

Keep Reading

SACEMS vs. Luck

How lucky would a asset class picker with no skill have to be to match the performance of the Simple Asset Class Momentum Strategy (SACEMS), which each month picks winners from a set of eight exchange-traded funds (ETF) plus cash based on total returns over a specified lookback interval. To investigate, we run 1,000 trials of a “strategy” that each month allocates funds to one, the equally weighted two or the equally weighted three of these nine assets picked at random. We focus on gross compound annual growth rate (CAGR) and gross maximum drawdown (MaxDD) as key performance statistics. Using monthly total (dividend-adjusted) returns and for the specified assets during February 2006 (limited by DBC) through June 2019, we find that:

Keep Reading

Adjust the SACEMS Asset Universe?

The Simple Asset Class ETF Momentum Strategy (SACEMS) each month picks winners based on total return over a specified ranking (lookback) interval from the following eight asset class exchange-traded funds (ETF), plus cash:

  1. PowerShares DB Commodity Index Tracking (DBC)
  2. iShares MSCI Emerging Markets Index (EEM)
  3. iShares MSCI EAFE Index (EFA)
  4. SPDR Gold Shares (GLD)
  5. iShares Russell 2000 Index (IWM)
  6. SPDR S&P 500 (SPY)
  7. iShares Barclays 20+ Year Treasury Bond (TLT)
  8. Vanguard REIT ETF (VNQ)
  9. 3-month Treasury bills (Cash)

Based on findings in “SACEMS Portfolio-Asset Addition Testing”, a subscriber proposed adding iShares JPMorgan Emerging Market Bond Fund (EMB) to this set. To investigate, we revisit relevant analyses and conduct robustness tests, with focus on the equal-weighted (EW) Top 3 SACEMS portfolio. Using monthly dividend-adjusted closing prices for asset class proxies and the yield for Cash during February 2006 (when all ETFs in the baseline universe are first available) through June 2019, we find that: Keep Reading

Mimicking Portfolios of Five ETFs Beat Most Active Mutual Funds?

Can investors beat a typical active U.S. equity mutual fund via a small portfolio of periodically re-weighted equity exchange-traded funds (ETF)? In their February 2019 paper entitled “Are Passive Funds Really Superior Investments: An Investor Perspective”, flagged by a subscriber, Edwin Elton, Martin Gruber and Andre de Souza:

  1. Determine via cluster analysis a small set of ETFs that captures most of the variation in 69 broad U.S. equity indexes.
  2. Explore use of this set to mimic past performances of many active U.S. equity mutual funds via 24-month linear regressions with ETF coefficients scaled to sum to one.
  3. Compare next-year (close of first trading day of the year after coefficient calculation to close of first trading day next year) returns of mimicking ETF portfolios and active mutual fund counterparts.

Their target set of 883 active U.S. equity mutual funds are those with at least: three years of data as of January 2003; $15 million in assets; and, 90% of assets allocated broadly to stocks. Using monthly returns for 69 U.S. equity indexes, the small set of passive equity ETFs that capture variation in these indexes and 883 active U.S. equity mutual funds during January 2003 through December 2018, they find that:

Keep Reading

Best U.S. Equity Market Hedge Strategy?

What steps should investors consider to mitigate impact of inevitable large U.S. stock market corrections? In their May 2019 paper entitled “The Best of Strategies for the Worst of Times: Can Portfolios be Crisis Proofed?”, Campbell Harvey, Edward Hoyle, Sandy Rattray, Matthew Sargaison, Dan Taylor and Otto Van Hemert compare performances of an array of defensive strategies with focus on the eight worst drawdowns (deeper than -15%) and three NBER recessions during 1985 through 2018, including:

  1. Rolling near S&P 500 Index put options, measured via the CBOE S&P 500 PutWrite Index.
  2. Credit protection portfolio that is each day long (short) beta-adjusted returns of duration-matched U.S. Treasury futures (BofAML US Corp Master Total Return Index), scaled retrospectively to 10% full-sample volatility.
  3. 10-year U.S. Treasury notes (T-notes).
  4. Gold futures.
  5. Multi-class time-series (intrinsic or absolute) momentum portfolios applied to 50 futures contract series and reformed monthly, with:
    • Momentum measured for 1-month, 3-month and 12-month lookback intervals.
    • Risk adjustment by dividing momentum score by the standard deviation of security returns.
    • Risk allocations of 25% to currencies, 25% to equity indexes, 25% to bonds and 8.3% to each of agricultural products, energies and metals. Within each group, markets have equal risk allocations.
    • Overall scaling retrospectively to 10% full-sample volatility.
    • With or without long equity positions.
  6. Beta-neutral factor portfolios that are each day long (short) stocks of the highest (lowest) quality large-capitalization and mid-capitalization U.S. firms, based on profitability, growth, balance sheet safety and/or payout ratios.

They further test crash protection of varying allocations to the S&P 500 Index and a daily reformed hedge consisting of equal weights to: (1) a 3-month time series momentum component with no long equity positions and 0.7% annual trading frictions; and, (2) a quality factor component with 1.5% annual trading frictions. For this test, they scale retrospectively to 15% full-sample volatility. Throughout the paper, they assume cost of leverage is the risk-free rate. Using daily returns for the S&P 500 Index and inputs for the specified defensive strategies during 1985 through 2018, they find that:

Keep Reading

Tax-efficient Retirement Withdrawals

Considering taxes, in what order should U.S. retirees consume different sources of retirement savings/income? In their August 2018 paper entitled “Constructing Tax Efficient Withdrawal Strategies for Retirees with Traditional 401(k)/IRAs, Roth 401(k)/IRAs, and Taxable Accounts”, James DiLellio and Daniel Ostrov describe and illustrate an algorithm that computes individualized tax-efficient consumption for U.S. retirees of:

  • Tax-deferred retirement accounts [Traditional IRA/401(k)].
  • Post-tax retirement accounts [Roth IRA/Roth 401(k)].
  • Other taxable retirement accounts.
  • Other sources of money subject to income tax, including: earned income, some pensions, annuities bought with pre-tax money, earnings from annuities bought with post-tax money and sometimes Social Security benefits.
  • Other sources of money that do not affect tax rates of retirement accounts, such as: tax-free gifts, Health Savings Accounts, some pensions, principal from annuities bought with post-tax money and sometimes Social Security benefits.

Their model adapts to individual retiree circumstances and accommodates typical changes in tax policies (changes in marginal rates and number of brackets). For tractability, they make simplifying assumptions. The principal simplification is that  return on stocks, stock dividend yield, inflation rate, tax brackets and rates, other income sources and consumption rates are known each year (not random variables). When the goal is to optimize a bequest, inputs also include year of retiree death, marginal tax rate of the heir and rate the heir consumes inherited retirement accounts. They do not attempt to determine the optimal mix of  stocks and bonds/cash within retirement accounts (their deterministic model would prefer all stocks). Using illustrations of algorithm outputs based on varying input assumptions, they find that: Keep Reading

Mean-Variance Optimization vs. Equal Weight for Sectors and Individual Stocks

Are mean-variance (MV) strategies preferable for allocations to asset classes and equal-weight (EW) preferable for allocations to much noisier individual assets? In their May 2019 paper entitled “Horses for Courses: Mean-Variance for Asset Allocation and 1/N for Stock Selection”, Emmanouil Platanakis, Charles Sutcliffe and Xiaoxia Ye address this question. They focus on the Bayes-Stein shrinkage MV strategy, with 10 U.S. equity sector indexes as asset classes and the 10 stocks with the largest initial market capitalizations within each sector (except only three for telecommunications) as individual assets. The Bayes–Stein shrinkage approach dampens the typically large effects of return estimation errors on MV allocations. For estimation of MV return and return covariance inputs, they use an expanding (inception-to-date) 12-month historical window. They focus on one-month-ahead performances of portfolios formed in four ways via a 2-stage process:

  1. MV-EW, which uses MV to determine sector allocations and EW to determine stock allocations within sectors.
  2. EW-EW, which uses EW for both deteriminations.
  3. EW-MV, which uses EW to determine sector allocations and MV to determine stock allocations within sectors.
  4. MV-MV, which uses MV for both deteriminations.

They consider four net performance metrics: annualized certainty equivalent return (CER) gain for moderately risk-averse investors; annualized Sharpe ratio (reward for risk); Omega ratio (average gain to average loss); and, Dowd ratio (reward for value at risk). They assume constant trading frictions of 0.5% of value traded. They perform robustness tests for U.S. data by using alternative MV strategies, different parameter settings and simulations. They perform a global robustness test using value-weighted equity indexes for UK, U.S., Germany, Switzerland, France, Canada and Brazil as asset classes and the 10 stocks with the largest initial market capitalizations within each index as individual assets (all in U.S. dollars). Using monthly total returns for asset classes and individual assets as specified and 1-month U.S. Treasury bill yield as the risk-free rate during January 1994 through August 2017, they find that: Keep Reading

Best Factor Allocation Strategy?

For investors embracing the concept of portfolios based on factor premiums (rather than asset classes), what is the best factor allocation approach? In their March 2019 paper entitled “Factor-Based Allocation: Is There a Superior Strategy?”, Hubert Dichtl, Wolfgang Drobetz and Viktoria-Sophie Wendt search for the best way of combining factors in a portfolio after accounting for bias introduced from snooping many alternative allocation strategies. They consider the following 10 factors (mostly long-short) suitable for a U.S. institutional investor constrained to global equity and fixed income securities: equity, value, size, momentum, quality, low-volatility, term, real rates, credit and high-yield. They construct factors using associated published indexes denominated in U.S. dollars, with 1-month U.S. Treasury bill (T-bill) yield as the risk-free rate. They consider 17 factor allocation strategies: equal weight, minimum variance, equal risk, maximum diversification, volatility timing, reward-to-risk timing, mean-variance optimization without and with shrinkage, Black-Litterman and eight combinations of these strategies. Their test portfolio holds a 100% position in cash and a fully hedged (long-short, or zero net investment) factor portfolio, subject to 0.5% trading frictions on portfolio turnover. Using monthly data required to construct factors and T-bill yield during January 2001 though December 2018, with the first 60 months set aside to estimate strategy inputs, they find that:

Keep Reading

Creating and Maintaining Antifragile Portfolios

How should investors manage their portfolios to withstand market crashes. In his March 2019 paper entitled “Managing the Downside of Active and Passive Strategies: Convexity and Fragilities”, Raphael Douady discusses how to construct an “antifragile” portfolio given that most equity market risk is not readily observable. He describes ways to monitor the probability of a new crisis. Based on in-depth analysis of market behaviors during past speculative bubbles and other crises, he concludes that:

Keep Reading

Optimal Retirement Glidepath with Trend Following

What are optimal allocations during retirement years for a portfolio of stocks and bonds, without and with a trend following overlay? In their March 2019 paper entitled “Absolute Momentum, Sustainable Withdrawal Rates and Glidepath Investing in US Retirement Portfolios from 1925”, Andrew Clare, James Seaton, Peter Smith and Steve Thomas compare outcomes across two sets of U.S. retirement portfolios since 1925:

  1. Standard – allocations to the S&P 500 Index and a bond index ranging from all stocks to all bonds in increments of 10%, rebalanced at the end of each month.
  2. Trend following – the same portfolios with a trend following overlay that shifts stock index and bond index allocations to U.S. Treasury bills (T-bills) when below respective 10-month simple moving averages at the end of the preceding month.

They consider investment horizons of 2 to 30 years to assess glidepath effects. They consider both U.S. Treasury bonds and U.S. corporate bonds to assess credit effects. For comparison of portfolio outcomes, they use real (inflation-adjusted) returns and focus on Perfect Withdrawal Rate (PWR), the maximum annual withdrawal rate that results in zero terminal value (requiring perfect foresight). Using monthly data for the S&P 500 Index, U.S. government and corporate bond indexes and U.S. inflation during 1926 through 2016, they find that: Keep Reading

Login
Daily Email Updates
Filter Research
  • Research Categories (select one or more)