Objective research to aid investing decisions
Value Allocations for Mar 2019 (Final)
Momentum Allocations for Mar 2019 (Final)
1st ETF 2nd ETF 3rd ETF

Value Premium

Is there a reliable benefit from conventional value investing (based on the book-to-market value ratio)? these blog entries relate to the value premium.

Suppressing Unrelated Risks from Stock Factor Portfolios

Does suppressing unrelated risks from stock factor portfolios improve performance? In their January 2017 paper entitled “Diversify and Purify Factor Premiums in Equity Markets”, Raul Leote de Carvalho, Lu Xiao, François Soupé and Patrick Dugnolle investigate how to improve the capture of four types of stock factor premiums: value (12 measures); quality (16 measures); low-risk (two measures); and, momentum (10 measures). They standardize the different factor measurement scales based on respective medians and standard deviations, and they discard outliers. Their baseline factors portfolios employ constant leverage (CL) by each month taking 100% long (100% short) positions in stocks with factor values associated with the highest (lowest) expected returns. They strip unrelated risks from baseline portfolios by:

  • SN – imposing sector neutrality by segregating stocks into 10 sectors before ranking them for assignment to long and short sides of the factor portfolio. 
  • CV – replacing constant leverage by each month weighting each stock in the portfolio to target a specified volatility based on its actual volatility over the past three years.
  • HB – hedging the market beta of the portfolio each month based on market betas of individual stocks calculated over the past three years by taking positions in the capitalization-weighted market portfolio and cash.
  • HS – hedging the size beta of the portfolio each month based on size betas of individual stocks calculated over the past three years by taking positions in the equal-weighted market portfolio and the capitalization-weighted market portfolio.

They examine effects of combining measures within factor types, combining types of factors and excluding short sides of factor portfolios. They also look at U.S., Europe and Japan separately. Their portfolio performance metric is the information ratio, annualized average return divided by annualized standard deviation of returns. Using data for stocks in the MSCI World Index since January 1997, in the S&P 500 Index since January 1990, in the STOXX Europe 600 Index since January 1992 and in the Japan Topix 500 Index since August 1993, all through November 2016, they find that: Keep Reading

Tail Risk as Stock Return Anomaly Driver

Do investors exploiting common stock return anomalies risk extraordinarily large drawdowns during market crashes? In their May 2016 paper entitled “Can Exposure to Aggregate Tail Risk Explain Size, Book-to-Market, and Idiosyncratic Volatility Anomalies?”, Sofiane Aboura and Eser Arisoy investigate whether portfolios based on the size, book-to-market ratio and idiosyncratic volatility effects bear elevated stock market tail risk. They measure market tail risk as change in VIX Tail Hedge Index (VXTH), which hedges extreme drops in the S&P 500 Index by holding the index and one-month far out-of-the-money (30-delta) call options on the CBOE Volatility Index (VIX). They test sensitivity of size and book-to-market factors to overall risk and tail risk by adding change in VIX (market volatility risk factor) and change in VXTH (market tail risk factor) to the Fama-French three-factor (market, size, book-to-market) model of stock returns. They consider two equal subperiods, one containing the 2008 financial crisis, to check robustness of findings. Using monthly values of VIX and VXTH, factor model returns and U.S. Treasury bill yields during January 2007 through February 2016 (110 months), they find that: Keep Reading

Combining Asset Class Diversification, Value/Momentum and Crash Avoidance

How can investors integrate global asset class diversification, pre-eminent factor premiums and crash protection? In his July 2016 paper entitled “The Trinity Portfolio: A Long-Term Investing Framework Engineered for Simplicity, Safety, and Outperformance”, Mebane Faber summarizes a portfolio combining these three principles, as follows:

  1. Global diversification: Include U.S. stocks, non-U.S. developed markets stocks, emerging markets stocks, corporate bonds, 30-year U.S. Treasury bonds, 10-year foreign government bonds, U.S. Treasury Inflation-Protected Securities (TIPS), commodities, gold and Real Estate Investment Trusts (REIT) .
  2. Value/momentum screens: For U.S. stocks, each month first rank stocks by value and momentum metrics and then pick those with the highest average ranks. For non-U.S. stocks, each month pick the cheapest overall markets. For bonds, each month pick those with the highest yields.
  3. Trend following for crash avoidance: For each asset each month, hold the asset (cash) if its price is above (below) its 10-month SMA at the end of the prior month.

The featured “Trinity” portfolio allocates 50% to a sub-portfolio based on principles 1 and 2 and 50% to a sub-portfolio based on principles 1, 2 and 3. Using monthly returns for the specified asset classes during 1973 through 2015, he finds that: Keep Reading

Profitability Minus Investment for Stock Selection

Is there some stock value metric that is markedly superior to the conventional book-to-market ratio (BM) for identifying undervalued and overvalued stocks? In his July 2016 paper entitled “Value Investing with Dividend-to-Market Ratio”, Yiqing Dai tests the effectiveness of maximum payable dividend ratio (DM) ) as an alternative to book-to-market ratio for value investing. He specifies DM as (profitability – investment)/market value, the difference between earning power of firm assets and reinvestment required to generate future earnings. He specifies profitability as prior-year revenue minus prior-year cost of goods sold, selling, general and administrative expenses, research and development expenditures and interest expense. He specifies investment as prior-year book equity times change in total assets from two years ago to prior-year, divided by change in assets. Using the specified accounting data and monthly returns for a broad sample of non-financial U.S. stocks during July 1963 through December 2013, he finds that: Keep Reading

Integrating Momentum and Value Stock Exposures

What is the best way to combine styles (smart betas) in one portfolio? In their June 2016 paper entitled “Long-Only Style Investing: Don’t Just Mix, Integrate”, Shaun Fitzgibbons, Jacques Friedman, Lukasz Pomorski and Laura Serban compare two approaches to long-only combined equity style investing:

  1. Mixed portfolio – simply picks stocks from single-style portfolios.
  2. Integrated portfolio – first combines single-style rankings into an overall score for each stock and then builds a portfolio based on top overall scores.

They focus on combining momentum stocks (highest return from 12 months ago to one month ago) and value stocks (high book-to-market ratio). They first employ simulated data to illustrate differences in stock selection between the two approaches. They then compare net performances for equally weighted, monthly rebalanced mixed and integrated combinations of liquid global stocks. Using monthly data for large-capitalization stocks from developed markets (roughly the MSCI World Index components) during February 1993 through December 2015, they find that: Keep Reading

Factor Portfolio Valuation and Timing of Factor Premiums

Does timing of factor premiums work? In his June 2016 paper entitled “My Factor Philippic”, Clifford Asness addresses three critiques of the exploitability of stock factor premiums:

  1. Most factors are currently very overvalued (expected premiums are small), perhaps because of crowded bets on them.
  2. Factor portfolios may therefore crash.
  3. In fact, increasing factor valuations account for most of the historical premium (there are no essential premiums).

He considers five long-short factors: (1) value based on book-to-price ratio (B/P); (2) value based on sales-to-price ratio (S/P); (3) momentum (total return from 12 months ago to one month ago); (4) profitability (gross profits-to-assets); and, (5) betting-against-beta (long leveraged low-beta assets and short high-beta assets). He calculates each factor premium as average return to a capitalization-weighted portfolio that is each month long (short) the third of large-capitalization U.S. stocks with the best (worst) expected returns based on that factor. He estimates the time-varying valuation of a factor via a value spread, the ratio of the capitalization-weighted B/P (or S/P) of the long side of the factor portfolio to that of its short side. He tests a simple factor timing strategy that holds no position if the factor’s value spread is at its historical median and scales linearly up (down) to a 100% (-100%) position in the factor portfolio as the factor’s value spread increases to its 95th (decreases to its 5th) historical percentile. The initial look-back interval is 20 years (such that testing begins in 1988), expanding as more data become available. Using the specified factor premium data for January 1968 through January 2016, he finds that: Keep Reading

Turn-of-the-Year Effects on Country Stock Market Value and Momentum

Does the January (turn-of-the-year) stock return anomaly affect value and momentum strategies applied at the country stock market level? In his June 2015 paper entitled “The January Seasonality and the Performance of Country-Level Value and Momentum Strategies”, Adam Zaremba investigates this question using four value and two momentum firm/stock metrics. The four value metrics, each measured over four prior quarters with a one-quarter lag and weighted by company according to the methodology of the associated stock index, are:

  1. Earnings-to-price ratio (EP).
  2. Earnings before interest, taxes, depreciation and amortization (EBITDA)-to-enterprise value (EV) ratio (EBEV).
  3. EBITDA-to-price ratio (EBP).
  4. Sales-to-EV ratio (SEV).

The two momentum metrics are:

  1. Stock index return from 12 months ago to one month ago (LtMom).
  2. Stock index return from 12 months ago to six months ago (IntMom).

He assesses strategy performance via returns in U.S. dollars in excess of one-month U.S. Treasury bill yield from hedge portfolios that are each month long (short) the equally weighted fifth of country stock indexes with the highest (lowest) expected returns based on each metric. He first reviews performances for all months and then focuses on turn-of-the-year (December and January) performances. Using monthly data for 78 existing and discontinued country stock market indexes during June 1995 through May 2015, he finds that: Keep Reading

Exploiting Multiple Stock Factors for Stock Selection

How good can factor investing get? In his May 2016 paper entitled “Quantitative Style Investing”, Mike Dickson examines strategies that:

  1. Aggregate return forecasting power of four or six theoretically-motivated stock factors (or characteristics) via monthly multivariate regressions.
  2. Use inception-to-date simple averages of regression coefficients, starting after the first 60 months and updating annually, to suppress estimation and sampling error.
  3. Create equally weighted portfolios that are long (short) the 50%, 20%, 10%, 4%, 2% or 1% of stocks with the highest (lowest) expected returns.

The six stock characteristics are: (1) market capitalization; (2), book-to-market ratio; (3) gross profit-to-asset ratio; (4) investment (annual total asset growth); (5) last-month return; and, (6) momentum (return from 12 months ago to two months ago). He considers strategies employing all six characteristics (Model 1) or just the first four, slow-moving ones (Model 2). He considers samples with or without microcaps (capitalizations less than the 20% percentile for NYSE stocks). He estimates trading frictions as 1% of the value traded each month in rebalancing to equal weight. Using monthly data for a broad sample of U.S. common stocks during July 1963 through December 2013 (with evaluated returns commencing July 1968), he finds that: Keep Reading

Exploiting Factor Premiums via Smart Beta Indexes

Do smart beta indexes efficiently exploit factor premiums? In his April 2016 paper entitled “Factor Investing with Smart Beta Indices”, David Blitz investigates how well smart beta indexes, which deviate from the capitalization-weighted market per mechanical rules, capture corresponding factor portfolios. He consider five factors: value, momentum, low-volatility, profitability and investment. He measures their practically exploitable premiums via returns on long-only value-weighted or equal-weighted portfolios of the 30% of large-capitalization U.S. stocks with the most attractive factor values. He tests six smart beta indexes:

  1. Russell 1000 Value.
  2. MSCI Value Weighted.
  3. MSCI Momentum.
  4. S&P Low Volatility.
  5. MSCI Quality.
  6. MSCI High Dividend.

Using monthly data for the five factor portfolios and the six smart beta indexes as available through December 2015, he finds that: Keep Reading

Factor Investing Wisdom?

How should investors think about stock factor investing? In his April 2016 paper entitled “The Siren Song of Factor Timing”, Clifford Asness summarizes his current beliefs on exploiting stock factor premiums. He defines factors as ways to select individual stocks based on such firm/stock variables as market capitalization, value (in many flavors), momentum, carry (yield) and quality. He equates factor, smart beta and style investing. He describes factor timing as attempting to predict and exploit variations in factor premiums. Based on past research on U.S. stocks mostly for the past 50 years, he concludes that: Keep Reading

Daily Email Updates
Research Categories
Recent Research
Popular Posts
Popular Subscriber-Only Posts