Objective research to aid investing decisions
Value Allocations for Feb 2019 (Final)
Momentum Allocations for Feb 2019 (Final)
1st ETF 2nd ETF 3rd ETF
CXO Advisory

Value Premium

Is there a reliable benefit from conventional value investing (based on the book-to-market value ratio)? these blog entries relate to the value premium.

Statistically Recasting the Big Three Anomalies

Do the size effect, value premium and momentum effect derive from common firm/stock characteristics other than size, book-to-market ratio and past return? In the October 2011 version of their paper entitled “Which Firms Are Responsible for Characteristic Anomalies? A Statistical Leverage Analysis”, Kevin Aretz and Marc Aretz statistically isolate and analyze the small minority of firms that drive these three anomalies. Specifically, they exclude firms from the sample experimentally to identify those stocks that contribute the most to each anomaly (exhibit the strongest statistical leverage) and then examine in several ways the characteristics and stock price behaviors of those firms. They define size based on market capitalization, value based on book-to-market ratio and momentum based on three-month past return (which exhibits stronger momentum than 12-month past return during the sample period). They form test portfolios annually on June 30 based on current size and momentum and six-month lagged book-to-market ratio and hold from July 1 to June 30 of the next year. Using monthly stock returns, stock trading data and accounting variables for the firms then included in the S&P 1500, along with contemporaneous benchmark data, during July 1974 through December 2007, they find that: Keep Reading

Size Effect and the Economy

Does the size effect vary with the state of the economy? In his October 2010 paper entitled “The Behaviour of Small Cap vs. Large Cap Stocks in Recessions and Recoveries: Empirical Evidence for the United States and Canada”, Lorne Switzer examines the relative performance of small versus large capitalization stocks around economic peaks and troughs (per NBER business cycle data). Using monthly returns for U.S. (Canadian) stocks starting with January 1926 (1987), associated firm characteristics and contemporaneous economic and equity market benchmark data through August 2010, he finds that: Keep Reading

Best Style by Investment Horizon

Should investors with different horizons prefer different styles (large versus small capitalization and value versus growth)? In their 2010 paper entitled “Time, Risk and Investment Styles”, Zugang Liu and Jia Wang investigate how equity investment style risks vary with investment horizon. They focus on the downside of asset returns rather than overall volatility to measure risk, arguing that investor risk aversion consistently relates to potential loss but not to return standard deviation. Specifically, lower partial standard deviation (LPSD) is appropriate for risk-averse investors because it assigns higher weights to greater losses, and shortfall risk is appropriate for aggressive investors because it considers only probability of loss (not size of loss). The authors use both rolling window and bootstrap methodologies to compare equity style expected shortfall and LPSD over horizons of one, five, ten, 15, 20, 30 and 40 years. Using returns for six style indexes for a broad sample of U.S. stocks (intersections of first, third and fifth size quintiles with highest and lowest book-to-market ratio quintiles) and Treasury bill yields over the period July 1926 through December 2008 (82.5 years), they find that: Keep Reading

Creative Destruction Risk Premium

Are some firms more at risk of creative destruction by new technologies? If so, does the market offer a premium to investors in such firms? In his March 2011 paper entitled “Creative Destruction and Asset Prices”, Joachim Grammig explores the concept of creative destruction as an explanation for the size effect and the value premium under the proposition that associated firms have a higher probability of being destroyed by technological change. He defines the pace of technological change as the annual percentage change in U.S. patents issued (patent activity growth). Using annual counts of newly issued patent from the U.S. Patent and Trademark Office and annual data on 25 portfolios of U.S. stocks formed by double-sorts on size and book-to-market ratio over the period 1927 through 2008, he finds that: Keep Reading

Value Premium as Risk Compensation

Are value stocks priced low because the companies are in financial distress? In their May 2011 paper entitled “Is the Value Premium Really a Compensation for Distress Risk?”, Wilma de Groot and Joop Huij investigate the relationships between the value premium and alternative measures of firm distress risk. Their core methodology employs monthly double-sorts on firm book-to-market ratio and each of four measures of firm financial risk: (1) financial leverage (debt-to-assets ratio); (2) a structural model of distance-to-default; (3) credit spread (between firm bonds and maturity-matched Treasuries); and, (4) credit rating. Using data to calculate these measures for the 1,500 largest U.S. firms, along with associated monthly stock prices, over the period September 1991 (limited by availability of credit spread data) through December 2009, they find that: Keep Reading

Individual Stocks Versus Portfolios

Can portfolios exhibit properties not evident from, or even contrary to, average properties of their component assets? In the April 2011 draft of their paper entitled “The Sources of Portfolio Returns: Underlying Stock Returns and the Excess Growth Rate”, Jason Greene and David Rakowski provide a framework for distinguishing two sources of portfolio return: (1) weighted average growth rates of component assets; and, (2) portfolio “excess growth rate” derived from diversification (component return volatilities and correlations). They apply this framework to investigate equity portfolio equal-weighting versus value-weighting, and to isolate the sources of the size effect and the value premium. They establish consistency in return measurements by matching rebalancing frequency and return measurement interval. Using monthly returns and firm characteristics for a broad sample of U.S. stocks over the period 1960 through 2009, they find that: Keep Reading

Interactions of Momentum, Valuation and Idiosyncratic Volatility

For what kind of stocks does momentum work best? In his March 2011 paper entitled “Growth Options, Idiosyncratic Volatility and Momentum”, Umut Celiker investigates the interactions among valuation (market to-book ratio, arguably a proxy for firm growth opportunities), valuation uncertainty (idiosyncratic volatility) and stock price momentum. For calendar-time analysis, he ranks stocks each month into quintiles by past six-month return, with a skip-month, and holds an equal-weighted hedge portfolio that is long the top (winner) quintile and short the bottom (loser) quintile for the next six months. For event analysis, he extends the holding interval to 60 months to explore momentum persistence/reversal. He computes stock idiosyncratic volatility relative to the S&P 500 Index over the prior 36 months. He defines the up (down) market state as the top 80% (bottom 20%) of months based on 60-month past value-weighted market returns averaged for each of the lagged six months. Most analysis focuses on the up market state. Using monthly firm accounting and stock price data for a broad sample of U.S. stocks over the period 1965 to 2008, he finds that: Keep Reading

Robustness Tests for Ten Popular Stock Return Anomalies

In their March 2011 paper entitled “The Shrinking Space for Anomalies”, George Jiang and Andrew Zhang investigate the robustness of ten well-known anomalies by iteratively “shrinking the stock space” in two ways to determine whether and how the anomalies really work. The ten anomaly variables are: size, book-to-market ratio, momentum, two liquidity measures, idiosyncratic volatility, accrual, capital expenditure, sales growth and net share issuance. The first way of “shrinking the stock space” involves: (1) ranking the universe of stocks by each of the ten anomaly variables into deciles; (2) iteratively trimming deciles from side of a variable distribution that a hedge portfolio would sell and the side that a hedge portfolio would buy; and, (3) retesting the strength of the anomaly associated with the variable after each iterative trimming. The second way of “shrinking the stock space” involves: (1) trimming from the sample stocks with the smallest market capitalizations and the most extreme book-to-market ratios until size, book-to-market and momentum no longer have significant four-factor alphas for value-weighting and equal equal-weighting (thereby “perfecting” the sample for the four-factor model); and, (2) retesting the strength of the anomalies associated with the other seven variables using the perfected sample. This approach obviates weaknesses in alpha measurement via the commonly applied but imperfect three-factor (market, size, book-to-market) and four-factor (plus momentum) risk models. Using firm characteristics and trading data for all non-financial NYSE, AMEX, and NASDAQ common stocks over the period July 1962 through December 2007, they find that: Keep Reading

Bottom-up Anomalies vs. Top-down Portfolio Efficiency

How do widely recognized stock return anomalies (return variations unexplained by asset pricing models) mesh with efficient portfolio selection theory? In their paper entitled “Investing in Stock Market Anomalies”, Turan Bali, Stephen Brown and Ozgur Demirtas examine five prominent stock market anomalies whose existence is robust through time and across markets (size, book-to-market, short-term reversal, intermediate-term momentum and long-term reversion) in contexts of efficient portfolio selection via mean-variance and stochastic dominance methods. In other words, they test whether portfolios that apply these anomalies exhibit exceptionally good combinations of return and volatility, or obviously outperform on a purely statistical basis. Both these portfolio selection methods have shortcomings related to their inclusion of extreme, impractical choices. The authors consider relaxed (“Almost”) versions of these methods that prohibit such choices as “pathological.” The authors form value-weighted size and book-to-market portfolios annually and value-weighted reversal, momentum and reversion portfolios monthly. Using monthly data for July 1926 through December 2008 (990 months) for a broad sample of U.S. stocks to construct diversified anomaly portfolios, they find that: Keep Reading

Firm Fundamentals and Future Stock Returns

Which firm fundamentals predict associated stocks returns, and which ones do not? In their February 2011 paper entitled “Returns Premia on Company Fundamentals”, Kateryna Shapovalova, Alexander Subbotin and Thierry Chauveau assess the significance, stability and interplay of excess returns for individual stocks as predicted by widely used firm fundamentals. Specifically, they consider: book-to-price ratio; earnings-to-price ratio; sales-to-price ratio; cash flow-to-price ratio; dividend yield; market capitalization; growth in sales per share over the past one, three and five years; growth in earnings per share over the past one, three and five years; forecasted growth of earnings per share next year; forecasted long-term growth in earnings per share; forecasted earnings-to-price ratio; five-year average reinvested fraction of return on equity (internal growth); and, for control purposes, past returns over one, three and 12 months. Their methodology is direct stock-by-stock rather than portfolio-mediated, with the values of fundamentals across stocks normalized to a range of zero to one. They impose a three-month lag for accounting data to ensure public availability. Using monthly/quarterly firm fundamentals and monthly total stock returns for 9,363 NYSE-listed firms during 1979 through 2008, they find that: Keep Reading

Daily Email Updates
Research Categories
Recent Research
Popular Posts
Popular Subscriber-Only Posts