Momentum Investing
Do financial market prices reliably exhibit momentum? If so, why, and how can traders best exploit it? These blog entries relate to momentum investing/trading.
September 3, 2015 - Momentum Investing, Volatility Effects
What indicator works best to mitigate stock momentum strategy crashes? In his March 2015 paper entitled “Momentum Crash Management”, Mahdi Heidari compares performances of seven indicators for avoiding conventional stock momentum strategy crashes: (1) prior-month market return; (2) change in prior-month market return: (3) market volatility (standard deviation of 52 weekly returns); (4) dispersion (variance) of daily returns across all stocks; (5) market illiquidity (aggregate impact of trading on price); (6) momentum volatility (standard deviation of momentum strategy returns the past six months); and, (7) change in momentum volatility. The conventional strategy is each month long (short) the value-weighted tenth of stocks with the highest (lowest) returns from 12 months ago to one month ago. For each of the competing indicators, he invests in the conventional momentum strategy (cash) when the indicator is below (within) the top 10% of its values over the past five years. He uses portfolio turnover to compare implementation costs. Using data for a broad sample of relatively liquid U.S. stocks during January 1926 through December 2013, he finds that: Keep Reading
August 7, 2015 - Calendar Effects, Momentum Investing
Can investors refine and exploit the upward bias of overnight stock returns? In the July 2015 version of her paper entitled “Night Trading: Lower Risk but Higher Returns?”, Marie-Eve Lachance presents a way of sorting stocks by strength of overnight return bias and investigates gross and net profitability of associated overnight-only investment strategies. Specifically, she each month regresses daily overnight returns on total returns over the past year to measure an Overnight Bias Parameter (OBP) for each stock. She then forms portfolios based on monthly OBP sorts, focusing on the portfolio of stocks with significantly positive OBPs. She estimates trading frictions by: (1) assuming market-on-open and market-on-close trades, avoiding bid-ask spreads; and, (2) estimating broker charges from the lowest fees available in the U.S. in 2014. Using daily overnight (close-to-open) and intraday (open-to-close) total returns, trading data and characteristics for a broad sample of reasonably liquid U.S. stocks during 1995 through 2014, she finds that: Keep Reading
July 31, 2015 - Momentum Investing, Value Premium
Do dual-sorts of country stock market predictive factors add value to single-sorts? In the July 2015 version of his paper entitled “Combining Equity Country Selection Strategies” Adam Zaremba first re-examines earnings-price ratio (E/P), momentum (return from 12 months ago to one month ago), skewness (based on the last 24 monthly returns) and turnover ratio (average monthly turnover for the past 12 months) as country stock market predictive factors. He then investigates whether combined sorts on two factors outperform single-factor sorts. For each individual factor, he sorts country stock markets into fifths (quintiles) and measures the factor premium as the difference in returns between the highest and lowest quintiles. He focuses on market capitalization weighting within quintiles but considers equal and liquidity (average turnover) weighting schemes as robustness checks. For dual sorts, he computes combined ranking as the average of component factor rankings and then forms quintile portfolios. Using monthly total returns adjusted for local dividend tax rates in U.S. dollars for 78 existing and discontinued country stock indexes (primarily MSCI) during 1999 through March 2015, he finds that: Keep Reading
July 22, 2015 - Momentum Investing, Value Premium, Volatility Effects
Has (hypothetical) equity factor investing worked as well in recent years as indicated in past studies? In his July 2015 paper entitled “Factor Investing Revisited”, David Blitz updates his prior study quantifying the performance of allocations to U.S. stocks based on three factor premiums: (1) value (high book-to-market ratio); (2) momentum (high return from 12 months ago to one month ago); and, (3) low-volatility (low standard deviation of total returns over the last 36 months). He considers two additional factor allocations: (4) operating profitability (high return on equity); and, (5) investment (low asset growth). He specifies each factor portfolio as the 30% of U.S. stocks with market capitalizations above the NYSE median that have the highest expected returns, reformed monthly for momentum and low-volatility and annually for the other factors. He considers both equal-weighted and value-weighted portfolios for each factor. He also summarizes recent research on the role of small-capitalization stocks, factor timing, long-only versus long-short portfolios, applicability to international stocks and applicability to other asset classes. Using value, momentum, profitability and investment factor portfolio returns from Kenneth French’s library and low-volatility portfolio returns as constructed from a broad sample of U.S. stocks during July 1963 through December 2014, he finds that: Keep Reading
July 9, 2015 - Momentum Investing
Is time series (intrinsic or absolute) momentum evident in international stock indexes and commodity indexes? In the June 2015 version of their paper entitled “The Trend is Your Friend: Time-Series Momentum Strategies Across Equity and Commodity Markets”, Athina Georgopoulou and George Wang test intrinsic momentum trading strategies that are each month long (short) equally weighted indexes with a positive (negative) cumulative return. They consider a range of look-back intervals for measuring cumulative index returns. They insert a skip-month between the look-back interval and index portfolio reformation to avoid short-term reversal. They consider a range of subsequent holding intervals. Using monthly closes in U.S. dollars for 45 equity indexes (25 developed and 22 emerging markets) and monthly excess returns for 22 commodity indexes during December 1969 through December 2013, they find that: Keep Reading
June 18, 2015 - Momentum Investing
Which works best, strategies comparing past returns among assets (relative or cross-sectional) or strategies requiring positive past raw/excess returns (intrinsic or absolute or time series)? In their May 2015 paper entitled “Cross-Sectional and Time-Series Tests of Return Predictability: What is the Difference?”, Amit Goyal and Narasimhan Jegadeesh investigate differences between relative and intrinsic past return strategies, focusing on individual U.S. common stocks. For relative return strategies, they construct portfolios that are long (short) stocks with above-average (below-average) past returns, with the long and short sides weighted equally. For intrinsic return strategies, they construct portfolios that are long (short) stocks with past returns greater (less) than the risk-free rate, with each stock weighted equally. They consider past return measurement (ranking) intervals and holding intervals each ranging from one month to 60 months. They also compare relative and intrinsic past return strategies across and within global asset classes (17 equity indexes, 21 bond indexes, 24 commodity spot series and 8 currencies). Finally, they apply the relative and intrinsic concepts to individual U.S. stock financial ratios (book/market, gross profit/assets, asset growth and accruals/assets), with relative comparing once a year to the average for all stocks and intrinsic comparing once a year stock-by-stock to respective median values over the past five years. Using data for a broad sample of U.S. common stocks above the 20th percentile of NYSE market capitalization during 1946 through 2013, and for the asset class series during 1985 through 2013, they find that: Keep Reading
June 5, 2015 - Momentum Investing
Is there strong evidence for price momentum within and across all major asset classes over the long run? In the May 2015 version of their paper entitled “215 Years of Global Multi-Asset Momentum: 1800-2014 (Equities, Sectors, Currencies, Bonds, Commodities and Stocks)”, Christopher Geczy and Mikhail Samonov examine the momentum effect for very long price histories within and across major asset class universes consisting of: 47 country equity markets; 301 global equity sectors; 43 government bond series; 76 commodities; 48 currencies; and, 34,795 U.S. stocks. Their baseline momentum metric is return from 12 months ago to two months ago, with two skipped months to avoid any short-term reversal, followed by a one-month holding interval. Their baseline momentum portfolio is long (short) the third of assets with highest (lowest) momentum, equally weighted and reformed monthly. Their benchmarks are the equally weighted returns of all assets in the universes. Using monthly price data for the specified assets as available during 1800 through 2014 (215 years), they find that: Keep Reading
June 2, 2015 - Momentum Investing, Size Effect, Value Premium, Volatility Effects
Do factors that predict returns in U.S. stock data also work on global stock markets at the country level? In the May 2015 version of their paper entitled “Do Quantitative Country Selection Strategies Really Work?”, Adam Zaremba and Przemysław Konieczka test 16 country stock market selection strategies based on relative market value, size, momentum, quality and volatility. For each of 16 factors across these categories, they sort country stock markets into fifths (quintiles) and measure the factor premium as return on the highest minus lowest quintiles. They consider equal, capitalization and liquidity (average turnover) weighting schemes within quintiles. They look at complementary large and small market subsamples, and complementary open (easy to invest) and closed market subsamples. Using monthly total returns adjusted for local dividend tax rates in U.S. dollars for 78 existing and discontinued country stock indexes (primarily MSCI) during 1999 through 2014, they find that: Keep Reading
June 1, 2015 - Momentum Investing, Strategic Allocation
Is intermediate-term asset class momentum a useful way to generate inputs (return, volatility and correlation forecasts) for a multi-class mean-variance optimization strategy? In their May 2015 paper entitled “Momentum and Markowitz: a Golden Combination”, Wouter Keller, Adam Butler and Ilya Kipnis test the effectiveness of using intermediate-term lookback intervals (1 to 12 months) to generate monthly long-only mean-variance optimized portfolios. They argue that such lookback intervals are more likely than conventional long (multi-year) intervals to provide forecasts that persist during one-month portfolio holding intervals. They name their approach Classical Asset Allocation (CAA). To test CAA, in addition to adopting the practical long-only constraint, they further:
- Select from the efficient frontier a target annualized portfolio volatility of either 10% (aggressive) or 5% (conservative).
- Forecast asset returns by averaging results from lookback intervals of 1, 3, 6 and 12 months.
- Forecast covariances (volatility-correlation relationships) from a 12-month lookback interval.
- Cap portfolio weights for risky assets at 25%, but do not cap weights for 3-month U.S. Treasury bills (T-bills) and 10-year U.S. Treasury notes (T-notes).
- Consider three universes of 8, 16 and 39 asset class proxies.
- Use equal weighting (EW) of all assets in a universe as a benchmark.
They introduce an optimizer program to streamline calculation of optimal portfolio weights. Using monthly total returns for 39 indexes spanning multiple asset classes as available during January 1914 through December 2014, they find that: Keep Reading
May 15, 2015 - Momentum Investing
Can investors amplify stock return momentum by screening past winners and losers based on return skewness? In their April 2015 paper entitled “Expected Skewness and Momentum”, Heiko Jacobs, Tobias Regele and Martin Webee explore the interaction of expected stock return skewness and momentum. They measure expected skewness as maximum daily return over the preceding month, which predicts future skewness more accurately than does past skewness. Their benchmark is a conventional momentum portfolio that is each month long (short) the fifth, or quintile, of stocks with the highest (lowest) returns from 12 months ago to one month ago. To test the interaction of expected skewness and momentum, they first sort stocks into quintiles based on expected skewness and then sort each expected skewness quintile into quintiles based on momentum (25 total portfolios). Their skewness-weakened momentum portfolio is long (short) winners (losers) with relatively high/positive (low/negative) expected skewness. Their skewness-enhanced momentum portfolio is long (short) winners (losers) with relatively low/negative (high/positive) expected skewness. Using daily and monthly returns for a broad sample of U.S. common stocks (excluding very small and illiquid stocks) during January 1926 through December 2011, they find that: Keep Reading